
Valliappa Lakshmanan,
Martin Görner & Ryan Gillard

Practical Machine
Learning for
Computer Vision
End-to-End Machine Learning for Images

Valliappa Lakshmanan, Martin Görner,
and Ryan Gillard

Practical Machine Learning for
Computer Vision

End-to-End Machine Learning for Images

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-10236-4

[LSI]

Practical Machine Learning for Computer Vision
by Valliappa Lakshmanan, Martin Görner, and Ryan Gillard

Copyright © 2021 Valliappa Lakshmanan, Martin Görner, and Ryan Gillard. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisition Editor: Rebecca Novack
Development Editor: Amelia Blevins and Shira Evans
Production Editor: Katherine Tozer
Copyeditor: Rachel Head
Proofreader: Piper Editorial Consulting, LLC

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Robert Romano

July 2021: First Edition

Revision History for the First Edition
2021-07-21: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098102364 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Practical Machine Learning for Com‐
puter Vision, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098102364

Table of Contents

Preface. xi

1. Machine Learning for Computer Vision. 1
Machine Learning 2
Deep Learning Use Cases 5
Summary 7

2. ML Models for Vision. 9
A Dataset for Machine Perception 9

5-Flowers Dataset 10
Reading Image Data 11
Visualizing Image Data 14
Reading the Dataset File 14

A Linear Model Using Keras 17
Keras Model 18
Training the Model 27

A Neural Network Using Keras 32
Neural Networks 33
Deep Neural Networks 43

Summary 50
Glossary 50

3. Image Vision. 55
Pretrained Embeddings 56

Pretrained Model 57
Transfer Learning 58

iii

Fine-Tuning 62
Convolutional Networks 67

Convolutional Filters 67
Stacking Convolutional Layers 72
Pooling Layers 73
AlexNet 75

The Quest for Depth 80
Filter Factorization 80
1x1 Convolutions 82
VGG19 83
Global Average Pooling 85

Modular Architectures 87
Inception 88
SqueezeNet 89
ResNet and Skip Connections 93
DenseNet 99
Depth-Separable Convolutions 103
Xception 107

Neural Architecture Search Designs 110
NASNet 110
The MobileNet Family 114

Beyond Convolution: The Transformer Architecture 124
Choosing a Model 126

Performance Comparison 126
Ensembling 128
Recommended Strategy 129

Summary 130

4. Object Detection and Image Segmentation. 131
Object Detection 132

YOLO 133
RetinaNet 139

Segmentation 156
Mask R-CNN and Instance Segmentation 156
U-Net and Semantic Segmentation 166

Summary 172

5. Creating Vision Datasets. 173
Collecting Images 173

Photographs 174

iv | Table of Contents

Imaging 176
Proof of Concept 179

Data Types 180
Channels 180
Geospatial Data 182
Audio and Video 184

Manual Labeling 187
Multilabel 188
Object Detection 189

Labeling at Scale 189
Labeling User Interface 190
Multiple Tasks 190
Voting and Crowdsourcing 192
Labeling Services 193

Automated Labeling 193
Labels from Related Data 194
Noisy Student 194
Self-Supervised Learning 194

Bias 195
Sources of Bias 195
Selection Bias 196
Measurement Bias 196
Confirmation Bias 197
Detecting Bias 198

Creating a Dataset 199
Splitting Data 199
TensorFlow Records 200
Reading TensorFlow Records 204

Summary 206

6. Preprocessing. 207
Reasons for Preprocessing 208

Shape Transformation 208
Data Quality Transformation 208
Improving Model Quality 209

Size and Resolution 210
Using Keras Preprocessing Layers 210
Using the TensorFlow Image Module 212
Mixing Keras and TensorFlow 213
Model Training 214

Table of Contents | v

Training-Serving Skew 216
Reusing Functions 217
Preprocessing Within the Model 219
Using tf.transform 221

Data Augmentation 224
Spatial Transformations 225
Color Distortion 229
Information Dropping 232

Forming Input Images 235
Summary 237

7. Training Pipeline. 239
Efficient Ingestion 240

Storing Data Efficiently 240
Reading Data in Parallel 243
Maximizing GPU Utilization 246

Saving Model State 253
Exporting the Model 254
Checkpointing 258

Distribution Strategy 260
Choosing a Strategy 261
Creating the Strategy 262

Serverless ML 266
Creating a Python Package 266
Submitting a Training Job 269
Hyperparameter Tuning 272
Deploying the Model 276

Summary 278

8. Model Quality and Continuous Evaluation. 281
Monitoring 281

TensorBoard 281
Weight Histograms 283
Device Placement 284
Data Visualization 285
Training Events 285

Model Quality Metrics 287
Metrics for Classification 287
Metrics for Regression 296
Metrics for Object Detection 297

vi | Table of Contents

Quality Evaluation 301
Sliced Evaluations 301
Fairness Monitoring 302
Continuous Evaluation 303

Summary 304

9. Model Predictions. 305
Making Predictions 305

Exporting the Model 305
Using In-Memory Models 306
Improving Abstraction 308
Improving Efficiency 309

Online Prediction 310
TensorFlow Serving 310
Modifying the Serving Function 312
Handling Image Bytes 314

Batch and Stream Prediction 317
The Apache Beam Pipeline 317
Managed Service for Batch Prediction 319
Invoking Online Prediction 320

Edge ML 321
Constraints and Optimizations 321
TensorFlow Lite 322
Running TensorFlow Lite 323
Processing the Image Buffer 324
Federated Learning 325

Summary 326

10. Trends in Production ML. 327
Machine Learning Pipelines 328

The Need for Pipelines 329
Kubeflow Pipelines Cluster 330
Containerizing the Codebase 330
Writing a Component 331
Connecting Components 334
Automating a Run 336

Explainability 337
Techniques 338
Adding Explainability 343

No-Code Computer Vision 350

Table of Contents | vii

Why Use No-Code? 350
Loading Data 351
Training 353
Evaluation 354

Summary 356

11. Advanced Vision Problems. 357
Object Measurement 357

Reference Object 358
Segmentation 360
Rotation Correction 361
Ratio and Measurements 362

Counting 363
Density Estimation 364
Extracting Patches 365
Simulating Input Images 366
Regression 368
Prediction 369

Pose Estimation 370
PersonLab 371
The PoseNet Model 372
Identifying Multiple Poses 374

Image Search 375
Distributed Search 375
Fast Search 376
Better Embeddings 378

Summary 381

12. Image and Text Generation. 383
Image Understanding 383

Embeddings 383
Auxiliary Learning Tasks 385
Autoencoders 385
Variational Autoencoders 392

Image Generation 399
Generative Adversarial Networks 399
GAN Improvements 409
Image-to-Image Translation 418
Super-Resolution 423
Modifying Pictures (Inpainting) 426

viii | Table of Contents

Anomaly Detection 428
Deepfakes 431

Image Captioning 432
Dataset 433
Tokenizing the Captions 434
Batching 435
Captioning Model 436
Training Loop 438
Prediction 439

Summary 441

Afterword. 443

Index. 445

Table of Contents | ix

Preface

Machine learning on images is revolutionizing healthcare, manufacturing, retail, and
many other sectors. Many previously difficult problems can now be solved by train‐
ing machine learning (ML) models to identify objects in images. Our aim in this book
is to provide intuitive explanations of the ML architectures that underpin this fast-
advancing field, and to provide practical code to employ these ML models to solve
problems involving classification, measurement, detection, segmentation, representa‐
tion, generation, counting, and more.

Image classification is the “hello world” of deep learning. Therefore, this book also
provides a practical end-to-end introduction to deep learning. It can serve as a step‐
ping stone to other deep learning domains, such as natural language processing.

You will learn how to design ML architectures for computer vision tasks and carry
out model training using popular, well-tested prebuilt models written in TensorFlow
and Keras. You will also learn techniques to improve accuracy and explainability.
Finally, this book will teach you how to design, implement, and tune end-to-end ML
pipelines for image understanding tasks.

Who Is This Book For?
The primary audience for this book is software developers who want to do machine
learning on images. It is meant for developers who will use TensorFlow and Keras to
solve common computer vision use cases.

The methods discussed in the book are accompanied by code samples available at
https://github.com/GoogleCloudPlatform/practical-ml-vision-book. Most of this book
involves open source TensorFlow and Keras and will work regardless of whether you
run the code on premises, in Google Cloud, or in some other cloud.

Developers who wish to use PyTorch will find the textual explanations useful, but
will probably have to look elsewhere for practical code snippets. We do welcome

xi

https://github.com/GoogleCloudPlatform/practical-ml-vision-book

contributions of PyTorch equivalents of our code samples; please make a pull request
to our GitHub repository.

How to Use This Book
We recommend that you read this book in order. Make sure to read, understand, and
run the accompanying notebooks in the book’s GitHub repository—you can run
them in either Google Colab or Google Cloud’s Vertex Notebooks. We suggest that
after reading each section of the text you try out the code to be sure you fully under‐
stand the concepts and techniques that are introduced. We strongly recommend
completing the notebooks in each chapter before moving on to the next chapter.

Google Colab is free and will suffice to run most of the notebooks in this book; Vertex
Notebooks is more powerful and so will help you run through the notebooks faster.
The more complex models and larger datasets of Chapters 3, 4, 11, and 12 will benefit
from the use of Google Cloud TPUs. Because all the code in this book is written using
open source APIs, the code should also work in any other Jupyter environment where
you have the latest version of TensorFlow installed, whether it’s your laptop, or Ama‐
zon Web Services (AWS) Sagemaker, or Azure ML. However, we haven’t tested it in
those environments. If you find that you have to make any changes to get the code to
work in some other environment, please do submit a pull request in order to help
other readers.

The code in this book is made available to you under an Apache open source license.
It is meant primarily as a teaching tool, but can serve as a starting point for your pro‐
duction models.

Organization of the Book
The remainder of this book is organized as follows:

• In Chapter 2, we introduce machine learning, how to read in images, and how to
train, evaluate, and predict with ML models. The models we cover in Chapter 2
are generic and thus don’t work particularly well on images, but the concepts
introduced in this chapter are essential for the rest of the book.

• In Chapter 3, we introduce some machine learning models that do work well on
images. We start with transfer learning and fine-tuning, and then introduce a
variety of convolutional models that increase in sophistication as we get further
and further into the chapter.

• In Chapter 4, we explore the use of computer vision to address object detection
and image segmentation problems. Any of the backbone architectures intro‐
duced in Chapter 3 can be used in Chapter 4.

xii | Preface

https://github.com/GoogleCloudPlatform/practical-ml-vision-book

• In Chapters 5 through 9, we delve into the details of creating production com‐
puter vision machine learning models. We go though the standard ML pipeline
stage by stage, looking at dataset creation in Chapter 5, preprocessing in Chap‐
ter 6, training in Chapter 7, monitoring and evaluation in Chapter 8, and deploy‐
ment in Chapter 9. The methods discussed in these chapters are applicable to any
of the model architectures and use cases discussed in Chapters 3 and 4.

• In Chapter 10, we address three up-and-coming trends. We connect all the steps
covered in Chapters 5 through 9 into an end-to-end, containerized ML pipeline,
then we try out a no-code image classification system that can serve for quick
prototyping and as a benchmark for more custom models. Finally, we show how
to build explainability into image model predictions.

• In Chapters 11 and 12, we demonstrate how the basic building blocks of com‐
puter vision are used to solve a variety of problems, including image generation,
counting, pose detection, and more. Implementations are provided for these
advanced use cases as well.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, data types, environment variables,
statements, and keywords.

Constant width bold

Used for emphasis in code snippets, and to show command or other text that
should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

Preface | xiii

This element signifies a general note.

This element signifies a warning.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/GoogleCloudPlatform/practical-ml-vision-book.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Practical Machine Learning for Com‐
puter Vision, by Valliappa Lakshmanan, Martin Görner, and Ryan Gillard. Copyright
2021 Valliappa Lakshmanan, Martin Görner, and Ryan Gillard, 978-1-098-10236-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technology and business train‐
ing, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning

xiv | Preface

https://github.com/GoogleCloudPlatform/practical-ml-vision-book
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com

paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/practical-ml-4-computer-
vision.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We are very thankful to Salem Haykal and Filipe Gracio, our superstar reviewers who
reviewed every chapter in this book—their eye for detail can be felt throughout.
Thanks also to the O’Reilly technical reviewers Vishwesh Ravi Shrimali and Sanyam
Singhal for suggesting the reordering that improved the organization of the book. In
addition, we would like to thank Rajesh Thallam, Mike Bernico, Elvin Zhu, Yuefeng
Zhou, Sara Robinson, Jiri Simsa, Sandeep Gupta, and Michael Munn for reviewing
chapters that aligned with their areas of expertise. Any remaining errors are ours, of
course.

We would like to thank Google Cloud users, our teammates, and many of the cohorts
of the Google Cloud Advanced Solutions Lab for pushing us to make our explana‐
tions crisper. Thanks also to the TensorFlow, Keras, and Google Cloud AI engineer‐
ing teams for being thoughtful partners.

Preface | xv

http://oreilly.com
https://oreil.ly/practical-ml-4-computer-vision
https://oreil.ly/practical-ml-4-computer-vision
mailto:bookquestions@oreilly.comT
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Our O’Reilly team provided critical feedback and suggestions. Rebecca Novack sug‐
gested updating an earlier O’Reilly book on this topic, and was open to our recom‐
mendation that a practical computer vision book would now involve machine
learning and so the book would require a complete rewrite. Amelia Blevins, our edi‐
tor at O’Reilly, kept us chugging along. Rachel Head, our copyeditor, and Katherine
Tozer, our production editor, greatly improved the clarity of our writing.

Finally, and most importantly, thanks also to our respective families for their support.

— Valliappa Lakshmanan, Bellevue, WA
Martin Görner, Bellevue, WA
Ryan Gillard, Pleasanton, CA

xvi | Preface

CHAPTER 1

Machine Learning for Computer Vision

Imagine that you are sitting in a garden, observing what’s going on around you. There
are two systems in your body that are at work: your eyes are acting as sensors and
creating representations of the scene, while your cognitive system is making sense of
what your eyes are seeing. Thus, you might see a bird, a worm, and some movement
and realize that the bird has walked down the path and is eating a worm (see
Figure 1-1).

Figure 1-1. Human vision involves our sensory and cognitive systems.

Computer vision tries to imitate human vision capabilities by providing methods for
image formation (mimicking the human sensory system) and machine perception
(mimicking the human cognitive system). Imitation of the human sensory system is
focused on hardware and on the design and placement of sensors such as cameras.

1

The modern approach to imitating the human cognitive system consists of machine
learning (ML) methods that are used to extract information from images. It is these
methods that we cover in this book.

When we see a photograph of a daisy, for example, our human cognitive system is
able to recognize it as a daisy (see Figure 1-2). The machine learning models for
image classification that we build in this book imitate this human capability by start‐
ing from photographs of daisies.

Figure 1-2. An image classification machine learning model imitates the human cogni‐
tive system.

Machine Learning
If you were reading a book on computer vision in the early 2010s, the methods used
to extract information from photographs would not have involved machine learning.
Instead, you would have been learning about denoising, edge finding, texture detec‐
tion, and morphological (shape-based) operations. With advancements in artificial
intelligence (more specifically, advances in machine learning), this has changed.

Artificial intelligence (AI) explores methods by which computers can mimic human
capabilities. Machine learning is a subfield of AI that teaches computers to do this by
showing them a large amount of data and instructing them to learn from it. Expert
systems is another subfield of AI—expert systems teach computers to mimic human
capabilities by programming the computers to follow human logic. Prior to the 2010s,
computer vision tasks like image classification were commonly done by building
bespoke image filters to implement the logic laid out by experts. Nowadays, image

2 | Chapter 1: Machine Learning for Computer Vision

classification is achieved through convolutional networks, a form of deep learning
(see Figure 1-3).

Figure 1-3. Computer vision is a subfield of AI that tries to mimic the human visual sys‐
tem; while it used to rely on an expert systems approach, today it’s done with machine
learning.

Take, for example, the image of the daisy in Figure 1-2. A machine learning approach
teaches a computer to recognize the type of flower in an image by showing the com‐
puter lots of images along with their labels (or correct answers). So, we’d show the
computer lots of images of daisies, lots of images of tulips, and so on. Based on such a
labeled training dataset, the computer learns how to classify an image that it has not
encountered before. How this happens is discussed in Chapters 2 and 3.

In an expert system approach, on the other hand, we would start by interviewing a
human botanist on how they classify flowers. If the botanist explained that bellis per‐
ennis (the scientific name for a daisy) consists of white elongated petals around a yel‐
low center and green, rounded leaves, we would attempt to devise image processing
filters to match these criteria. For example, we’d look for the prevalence of white, yel‐
low, and green in the image. Then we’d devise edge filters to identify the borders of
the leaves and matched morphological filters to see if they match the expected roun‐
ded shape. We might smooth the image in HSV (hue, saturation, value) space to
determine the color of the center of the flower as compared to the color of the petals.
Based on these criteria, we might come up with a score for an image that rates the

Machine Learning | 3

1 Top-5 accuracy means that we consider the model to be correct if it returns the correct label for an image
within its top five results.

likelihood that it is a daisy. Similarly, we’d design and apply different sets of rules for
roses, tulips, sunflowers, and so on. To classify a new image, we’d pick the category
whose score is highest for that image.

This description illustrates the considerable bespoke work that was needed to create
image classification models. This is why image classification used to have limited
applicability.

That all changed in 2012 with the publication of the AlexNet paper. The authors—
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton—were able to greatly outper‐
form any existing image classification method by applying convolutional networks
(covered in Chapter 3) to the benchmark dataset used in the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC). They achieved a top-51 error of 15.3%, while
the error rate of the runner-up was over 26%. Typical improvements in competitions
like this are on the order of 0.1%, so the improvement that AlexNet demonstrated
was one hundred times what most people expected! This was an attention-grabbing
performance.

Neural networks had been around since the 1970s, and convolutional neural net‐
works (CNNs) themselves had been around for more than two decades by that point
—Yann LeCun introduced the idea in 1989. So what was new about AlexNet? Four
things:

Graphics processing units (GPUs)
Convolutional neural networks are a great idea, but they are computationally
very expensive. The authors of AlexNet implemented a convolutional network on
top of the graphics rendering libraries provided by special-purpose chips called
GPUs. GPUs were, at the time, being used primarily for high-end visualization
and gaming. The paper grouped the convolutions to fit the model across two
GPUs. GPUs made convolutional networks feasible to train (we’ll talk about dis‐
tributing model training across GPUs in Chapter 7).

Rectified linear unit (ReLU) activation
AlexNet’s creators used a non-saturating activation function called ReLU in their
neural network. We’ll talk more about neural networks and activation functions
in Chapter 2; for now, it’s sufficient to know that using a piecewise linear non-
saturating activation function enabled their model to converge much faster.

4 | Chapter 1: Machine Learning for Computer Vision

https://dl.acm.org/doi/10.1145/3065386
https://oreil.ly/IRHqY
https://oreil.ly/EqY3a

Regularization
The problem with ReLUs—and the reason they hadn’t been used much until 2012
—was that, because they didn’t saturate, the neural network’s weights became
numerically unstable. The authors of AlexNet used a regularization technique to
keep the weights from becoming too large. We’ll discuss regularization in Chap‐
ter 2 too.

Depth
With the ability to train faster, they were able to train a more complex model that
had more neural network layers. We say a model with more layers is deeper; the
importance of depth will be discussed in Chapter 3.

It is worth recognizing that it was the increased depth of the neural network (allowed
by the combination of the first three ideas) that made AlexNet world-beating. That
CNNs could be sped up using GPUs had been proven in 2006. The ReLU activation
function itself wasn’t new, and regularization was a well-known statistical technique.
Ultimately, the model’s exceptional performance was due to the authors’ insight that
they could combine all of these to train a deeper convolutional neural network than
had been done before.

Depth is so important to the resurging interest in neural networks that the whole field
has come to be referred to as deep learning.

Deep Learning Use Cases
Deep learning is a branch of machine learning that uses neural networks with many
layers. Deep learning outperformed the previously existing methods for computer
vision, and has now been successfully applied to many other forms of unstructured
data: video, audio, natural language text, and so on.

Deep learning gives us the ability to extract information from images without having
to create bespoke image processing filters or code up human logic. When doing
image classification using deep learning, we need hundreds or thousands or even mil‐
lions of images (the more, the better), for which we know the correct label (like
“tulip” or “daisy”). These labeled images can be used to train an image classification
deep learning model.

As long as you can formulate a task in terms of learning from data, it is possible to
use computer vision machine learning methods to address the problem. For example,
consider the problem of optical character recognition (OCR)—taking a scanned
image and extracting the text from it. The earliest approaches to OCR involved teach‐
ing the computer to do pattern matching against what individual letters look like.
This turns out to be a challenging approach, for various reasons. For example:

Deep Learning Use Cases | 5

https://oreil.ly/9p3Ba

• There are many fonts, so a single letter can be written in many ways.
• Letters come in different sizes, so the pattern matching has to be scale-invariant.
• Bound books cannot be laid flat, so the scanned letters are distorted.
• It is not enough to recognize individual letters; we need to extract the entire text.

The rules of what forms a word, a line, or a paragraph are complex (see
Figure 1-4).

Figure 1-4. Optical character recognition based on rules requires identifying lines, break‐
ing them into words, and then identifying the component letters of each word.

On the other hand, with the use of deep learning, OCR can be quite easily formulated
as an image classification system. There are many books that have already been digi‐
tized, and it’s possible to train the model by showing it a scanned image from a book
and using the digitized text as a label.

Computer vision methods provide solutions for a variety of real-world problems.
Besides OCR, computer vision methods have been successfully applied to medical
diagnosis (using images such as X-rays and MRIs), automating retail operations (such
as reading QR codes, recognizing empty shelves, checking the quality of vegetables,
etc.), surveillance (monitoring crop yield from satellite images, monitoring wildlife
cameras, intruder detection, etc.), fingerprint recognition, and automotive safety (fol‐
lowing cars at a safe distance, identifying changes in speed limits from road signs,
self-parking cars, self-driving cars, etc.).

Computer vision has found use in many industries. In government, it has been used
for monitoring satellite images, in building smart cities, and in customs and security

6 | Chapter 1: Machine Learning for Computer Vision

inspections. In healthcare, it has been used to identify eye disease and to find early
signs of cancer from mammograms. In agriculture, it has been used to spot malfunc‐
tioning irrigation pumps, assess crop yields, and identify leaf disease. In manufactur‐
ing, it finds a use on factory floors for quality control and visual inspection. In
insurance, it has been used to automatically assess damage to vehicles after an
accident.

Summary
Computer vision helps computers understand the content of digital images such as
photographs. Starting with a seminal paper in 2012, deep learning approaches to
computer vision have become wildly successful. Nowadays, we find successful uses of
computer vision across a large number of industries.

We’ll start our journey in Chapter 2 by creating our first machine learning models.

Summary | 7

CHAPTER 2

ML Models for Vision

In this chapter, you will learn how to represent images and train basic machine learn‐
ing models to classify images. You will discover that the performance of linear and
fully connected neural networks is poor on images. However, along the way, you will
learn how to use the Keras API to implement ML primitives and train ML models.

The code for this chapter is in the 02_ml_models folder of the
book’s GitHub repository. We will provide file names for code sam‐
ples and notebooks where applicable.

A Dataset for Machine Perception
For the purposes of this book, it will be helpful if we take a single practical problem
and build a variety of machine learning models to solve it. Assume that we have col‐
lected and labeled a dataset of nearly four thousand photographs of flowers. There are
five types of flowers in the 5-flowers dataset (see Figure 2-1), and each image in the
dataset has already been labeled with the type of flower it depicts.

Figure 2-1. The photographs in the 5-flowers dataset are of five types of flowers: daisies,
dandelions, roses, sunflowers, and tulips.

9

https://github.com/GoogleCloudPlatform/practical-ml-vision-book

Suppose we want to create a computer program that will, when provided an image,
tell us what type of flower is in the image. We are asking the machine learning model
to learn to perceive what’s in the image, so you might see this type of task called
machine perception. Specifically, the type of perception is analogous to human sight,
so the problem is termed computer vision, and in this case we will solve it through
image classification.

5-Flowers Dataset
The 5-flowers dataset was created by Google and placed in the public domain with a
Creative Commons license. It is published as a TensorFlow dataset and available in a
public Google Cloud Storage bucket (gs://cloud-ml-data/) in the form of JPEG
files. This makes the dataset both realistic (it consists of JPEG photographs of the sort
collected by off-the-shelf cameras) and readily accessible. Therefore, we will use it as
an ongoing example in this book.

An Example, but Not a Template
The 5-flowers dataset is a great dataset to learn with, but you should not use it as the
template for how you create a training dataset. There are several factors that make the
5-flowers dataset subpar from the perspective of serving as a template:

Quantity
To train ML models from scratch, you’ll typically need to collect millions of
images. There are alternative approaches that work with fewer images, but you
should attempt to collect the largest dataset that is practical (and ethical!).

Data format
Storing the images as individual JPEG files is very inefficient because most of
your model training time will be spent waiting for data to be read. It is better to
use TensorFlow Record format.

Content
The dataset itself consists of found data—images that were not explicitly collected
for the classification task. You should, if your problem domain allows, collect
data more purposefully. More on this shortly.

Labeling
The labeling of images is a topic in and of itself. This dataset was manually
labeled. This can become impractical for larger datasets.

We will discuss these factors and provide best practices for how to design, collect,
organize, store, and label data throughout the book.

10 | Chapter 2: ML Models for Vision

https://oreil.ly/tqwFi

In Figure 2-2, you can see several of the tulip photographs. Note that they range from
close-up photographs to photographs of fields of tulips. All of these are photographs
that a human would have no problem labeling as tulips, but it’s a difficult problem for
us to capture using simple rules—if we were to say a tulip is an elongated flower, for
example, only the first and fourth images would qualify.

Figure 2-2. These five photographs of tulips vary widely in terms of zoom, color of the
tulips, and what’s in the frame.

Standardize Image Collection
We are choosing to address a hard problem where the flower images are all collected
in real-world conditions. However, in practice, you can often make a machine percep‐
tion problem easier by standardizing how the images are collected. For example, you
could specify that your images have to be collected in controlled conditions, with flat
lighting, and at a consistent zoom. This is common in the manufacturing industry—
factory conditions can be precisely specified. It is also common to design the scanner
in such a way that an object can be placed in only one orientation. As a machine
learning practitioner, you should be on the lookout for ways to make machine per‐
ception problems easier. This is not cheating—it’s the smart thing to do to set yourself
up for success.

Keep in mind, however, that your training dataset has to reflect the conditions under
which your model will be required to make predictions. If your model is trained only
on photographs of flowers taken by professional photographers, it will probably do
poorly on photographs taken by amateurs whose lighting, zoom, and framing choices
are likely to be different.

Reading Image Data
To train image models, we need to read image data into our programs. There are four
steps to reading an image in a standard format like JPEG or PNG and getting it ready
to train machine learning models with it (the complete code is available in
02a_machine_perception.ipynb in the GitHub repository for the book):

A Dataset for Machine Perception | 11

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/02_ml_models/02a_machine_perception.ipynb

import tensorflow as tf
def read_and_decode(filename, reshape_dims):
 # 1. Read the file.
 img = tf.io.read_file(filename)
 # 2. Convert the compressed string to a 3D uint8 tensor.
 img = tf.image.decode_jpeg(img, channels=3)
 # 3. Convert 3D uint8 to floats in the [0,1] range.
 img = tf.image.convert_image_dtype(img, tf.float32)
 # 4. Resize the image to the desired size.
 return tf.image.resize(img, reshape_dims)

We first read the image data from persistent storage into memory as a sequence of
bytes:

 img = tf.io.read_file(filename)

The variable img here is a tensor (see “What’s a Tensor?” on page 13) that contains an
array of bytes. We parse these bytes to convert them into the pixel data—this is also
called decoding the data because image formats like JPEG require you to decode the
pixel values from lookup tables:

 img = tf.image.decode_jpeg(img, channels=3)

Here, we specify that we want only the three color channels (red, green, and blue)
from the JPEG image and not the opacity, which is the fourth channel. The channels
you have available depend on the file itself. Grayscale images may have only one
channel.

The pixels will consist of RGB values that are of type uint8 and are in the range
[0,255]. So, in the third step, we convert them to floats and scale the values to lie in
the range [0,1]. This is because machine learning optimizers are tuned to work well
with small numbers:

 img = tf.image.convert_image_dtype(img, tf.float32)

Finally, we resize the image to the desired size. Machine learning models are built to
work with inputs of known sizes. Since images in the real world are likely to come in
arbitrary sizes, you might have to shrink, crop, or expand them to fit your desired
size. For example, to resize the image to be 256 pixels wide and 128 pixels tall, we’d
specify:

 tf.image.resize(img,[256, 128])

In Chapter 6, we’ll see that this method does not preserve the aspect ratio and we’ll
look at other options to resize images.

12 | Chapter 2: ML Models for Vision

What’s a Tensor?
In mathematics, a 1D array is called a vector, and a 2D array is called a matrix. A
tensor is an array that could have any number of dimensions (the number of dimen‐
sions is called the rank). A matrix with 12 rows and 18 columns is said to have a shape
of (12, 18) and a rank of 2. So, a tensor can have arbitrary shape.

The common array math library in Python is called numpy. You can use this library to
create n-dimensional arrays, but the problem is that they are not hardware-
accelerated. For example, this is a 1D array whose shape is (4):

x = np.array([2.0, 3.0, 1.0, 0.0])

whereas this is a 5D array of zeros (note that there are five numbers in the shape):

x5d = np.zeros(shape=(4, 3, 7, 8, 3))

To obtain hardware acceleration using TensorFlow, you can convert either numpy
array into a tensor, which is how TensorFlow represents arrays, using:

tx = tf.convert_to_tensor(x, dtype=tf.float32)

And you can convert a tensor back into a numpy array using:

x = tx.numpy()

Mathematically, numpy arrays and TensorFlow tensors are the same thing. However,
there is an important practical difference—all numpy arithmetic is done on the CPU,
while the TensorFlow code runs on a GPU if one is available. Thus, doing:

x = x * 0.3

will typically be less efficient than:

tx = tx * 0.3

In general, the more you can do using TensorFlow operations, the more efficient your
program will be. It is also more efficient if you vectorize your code (to process batches
of images) so that you are carrying out a single in-place tensor operation instead of a
bunch of tiny little scalar operations.

These steps are not set in stone. If your input data consists of remotely sensed images
from a satellite that are provided in a band interleaved format or brain scan images
provided in Digital Imaging and Communications in Medicine (DICOM) format,
you obviously wouldn’t decode those using decode_jpeg(). Similarly, you may not
always resize the data. In some instances, you might choose to crop the data to the
desired size or pad it with zeros. In other cases, you might resize, keeping the aspect
ratio constant, and then pad the remaining pixels. These preprocessing operations are
discussed in Chapter 6.

A Dataset for Machine Perception | 13

Visualizing Image Data
Always visualize a few of the images to ensure that you are reading the data correctly
—a common mistake is to read the data in such a way that the images are rotated or
mirrored. Visualizing the images is also useful to get a sense of how challenging a
machine perception problem is.

We can use Matplotlib’s imshow() function to visualize an image, but in order to do so
we must first convert the image, which is a TensorFlow tensor, into a numpy array
using the numpy() function.

def show_image(filename):
 img = read_and_decode(filename, [IMG_HEIGHT, IMG_WIDTH])
 plt.imshow(img.numpy());

Trying it out on one of our daisy images, we get what’s shown in Figure 2-3.

Figure 2-3. Make sure to visualize the data to ensure that you are reading it correctly.

Notice from Figure 2-3 that the filename contains the type of flower (daisy). This
means we can use wildcard matching with TensorFlow’s glob() function to get, say,
all the tulip images:

tulips = tf.io.gfile.glob(
 "gs://cloud-ml-data/img/flower_photos/tulips/*.jpg")

The result of running this code and visualizing a panel of five tulip photographs was
shown in Figure 2-2.

Reading the Dataset File
We now know how to read an image. In order to train a machine model, though, we
need to read many images. We also have to obtain the labels for each of the images.
We could obtain a list of all the images by carrying out a wildcard match using
glob():

tf.io.gfile.glob("gs://cloud-ml-data/img/flower_photos/*/*.jpg")

14 | Chapter 2: ML Models for Vision

Then, knowing that the images in our dataset have a naming convention, we could
take a filename and extract the label using string operations. For example, we can
remove the prefix using:

basename = tf.strings.regex_replace(
 filename,
 "gs://cloud-ml-data/img/flower_photos/", "")

and get the category name using:

label = tf.strings.split(basename, '/')[0]

As usual, please refer to the GitHub repository for this book for the full code.

However, for reasons of generalization and reproducibility (explained further in
Chapter 5), it is better to set aside in advance the images that we will retain for evalu‐
ation. That has already been done in the 5-flowers dataset, and the images to use for
training and evaluation are listed in two files in the same Cloud Storage bucket as the
images:

gs://cloud-ml-data/img/flower_photos/train_set.csv
gs://cloud-ml-data/img/flower_photos/eval_set.csv

These are comma-separated values (CSV) files where each line contains a filename
followed by the label.

One way to read a CSV file is to read in text lines using TextLineDataset, passing in
a function to handle each line as it is read through the map() function:

dataset = (tf.data.TextLineDataset(
 "gs://cloud-ml-data/img/flower_photos/train_set.csv").
 map(parse_csvline))

We are using the tf.data API, which makes it possible to handle
large amounts of data (even if it doesn’t all fit into memory) by
reading only a handful of data elements at a time, and performing
transformations as we are reading the data. It does this by using an
abstraction called tf.data.Dataset to represent a sequence of ele‐
ments. In our pipeline, each element is a training example that con‐
tains two tensors. The first tensor is the image and the second is the
label. Many types of Datasets correspond to many different file
formats. We’re using TextLineDataset, which reads text files and
assumes that each line is a different element.

parse_csvline() is a function that we supply in order to parse the line, extract the
filename of the image, read the image, and return the image and its label:

A Dataset for Machine Perception | 15

def parse_csvline(csv_row):
 record_defaults = ["path", "flower"]
 filename, label = tf.io.decode_csv(csv_row, record_defaults)
 img = read_and_decode(filename, [IMG_HEIGHT, IMG_WIDTH])
 return img, label

The record_defaults that are passed into the parse_csvline() function specify
what TensorFlow needs to replace in order to handle a line where one or more values
are missing.

To verify that this code works, we can print out the average pixel value for each chan‐
nel of the first three images in the training dataset:

for img, label in dataset.take(3):
 avg = tf.math.reduce_mean(img, axis=[0, 1])
 print(label, avg)

In this code snippet, the take() method truncates the dataset to three items. Notice
that because decode_csv() returns a tuple (img, label), that’s what we obtain when
we iterate through the dataset. Printing out the entire image is a terrible idea, so we
are printing out the average pixel value in the image using tf.reduce_mean().

The first line of the result is (with line breaks added for readability):

tf.Tensor(b'daisy', shape=(), dtype=string)
tf.Tensor([0.3588961 0.36257887 0.26933077],
 shape=(3,), dtype=float32)

Note that the label is a string tensor and the average is a 1D tensor of length 3. Why
did we get a 1D tensor? That’s because we passed in an axis parameter to
reduce_mean():

avg = tf.math.reduce_mean(img, axis=[0, 1])

Had we not supplied an axis, then TensorFlow would have computed the mean along
all the dimensions and returned a scalar value. Recall that the shape of the image is
[IMG_HEIGHT, IMG_WIDTH, NUM_CHANNELS]. Therefore, by providing axis=[0, 1],
we are asking TensorFlow to compute the average of all columns (axis=0) and all
rows (axis=1), but not to average the RGB values (see Figure 2-4).

Printing out statistics of the image like this is helpful for another
reason. If your input data is corrupt and there is unrepresentable
floating-point data (technically called NaN) in your images, the
mean will itself be NaN. This is a handy way to ensure that you
haven’t made a mistake when reading data.

16 | Chapter 2: ML Models for Vision

https://oreil.ly/E0xc2

Figure 2-4. We compute the reduce_mean() along the row and column axes of the
image.

A Linear Model Using Keras
As Figure 2-4 demonstrates, the reduce_mean() function weights each pixel value in
the image the same. What if we were to apply a different weight to each of the width *
height * 3 pixel-channel points in the image?

Given a new image, we can compute the weighted average of all its pixel values. We
can then use this value to choose between the five types of flowers. Therefore, we will
compute five such weighted averages (so that we are actually learning width * height *
3 * 5 weight values; see Figure 2-5), and choose the flower type based on which out‐
put is the largest.

A Linear Model Using Keras | 17

Figure 2-5. In the linear model, there are five outputs, one for each category; each of the
output values is a weighted sum of the input pixel values.

In practice, a constant term called a bias is also added, so that we can represent each
output value as:

Y j = b j + Σ
rows

Σ
columns

Σ
channels

wi * xi

Without the bias, we’d be forcing the output to be zero if all the pixels are black.

Keras Model
Rather than write the preceding equation using low-level TensorFlow functions, it
will be more convenient to use a higher-level abstraction. TensorFlow 1.1 shipped
with one such abstraction, the Estimator API, and Estimators are still supported for

18 | Chapter 2: ML Models for Vision

backward compatibility. However, the Keras API has been part of TensorFlow since
TensorFlow 2.0, and it’s what we recommend that you use.

A linear model can be represented in Keras as follows:

model = tf.keras.Sequential([
 tf.keras.layers.Flatten(input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)),
 tf.keras.layers.Dense(len(CLASS_NAMES))
])

A Sequential model consists of layers that are connected such that the output of one
layer is the input to the next. A layer is a Keras component that takes a tensor as
input, applies some TensorFlow operations to that input, and outputs a tensor.

The first layer, which is implicit, is the input layer, which asks for a 3D image tensor.
The second layer (the Flatten layer) takes a 3D image tensor as input and reshapes it
to be a 1D tensor with the same number of values. The Flatten layer is connected to
a Dense layer with one output node for each class of flower. The name Dense means
that every output is a weighted sum of every input and no weights are shared. We will
encounter other common types of layers later in this chapter.

To use the Keras model defined here, we need to call model.fit() with the training
dataset and model.predict() with each image we want to classify. To train the
model, we need to tell Keras how to optimize the weights based on the training data‐
set. The way to do this is to compile the model, specifying an optimizer to use, the loss
to minimize, and metrics to report. For example:

model.compile(
 optimizer='adam',
 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
 metrics=['accuracy'])

The Keras predict() function will do the model computation on the image. The
parameters to the compile() function make more sense if we look at the prediction
code first, so let’s start there.

Prediction function
Because the model has the trained set of weights in its internal state, we can compute
the predicted value for an image by calling model.predict() and passing in the
image:

pred = model.predict(tf.reshape(img,
 [1, IMG_HEIGHT, IMG_WIDTH, NUM_CHANNELS]))

The reason for the reshape() is that predict() expects a batch of images, so we
reshape the img tensor as a batch consisting of one image.

A Linear Model Using Keras | 19

What does the pred tensor that is output from model.predict() look like? Recall
that the final layer of the model was a Dense layer with five outputs, so the shape of
pred is (5)—that is, it consists of five numbers corresponding to the five flower types.
The first output is the model’s confidence that the image in question is a daisy, the
second output is the model’s confidence that the image is a dandelion, and so on. The
predicted confidence values are called logits and are in the range –infinity to +infinity.

The model’s prediction is the label in which it has the highest confidence:

pred_label_index = tf.math.argmax(pred)
pred_label = CLASS_NAMES[pred_label_index]

We can convert the logits to probabilities by applying a function called the softmax
function to them. So, the probability corresponding to the predicted label is:

prob = tf.math.softmax(pred)[pred_label_index]

Probability, Odds, Logits, Sigmoid, and Softmax
The output of a classification model is a probability—the likelihood that an event will
occur over many trials. Therefore, when building classification models, it is important
to understand several concepts related to probabilities. For example, if you are build‐
ing a model that classifies a machine part as being defective or non-defective, the
model does not provide a Boolean (true or false) output. Instead, it outputs the prob‐
ability that the part is defective.

Suppose you have an event that can happen with a probability p. Then, the probability
that it will not happen is 1 – p. The odds that it will happen in any given trial is the
probability of the event occurring divided by the probability of it not occurring, or p /
(1 – p). For example, if p=0.25, then the odds of the event happening are 0.25 / 0.75 =
1:3. On the other hand, if p=0.75, then the odds of it happening are 0.75 / 0.25 = 3:1.

The logit is the natural logarithm of the odds of the event happening. Thus, for an
event with p=0.25, the logit is log(0.25 / 0.75), or –1.098. For an event with p=0.75,
the logit is 1.098. As the probability approaches 0 the logit approaches –infinity, and
as the probability approaches 1 the logit approaches +infinity. Therefore, the logit
occupies the entire space of real numbers, as shown in Figure 2-6.

The sigmoid is the inverse of the logit function. Thus, the sigmoid of 1.098 is 0.75.
Mathematically, the sigmoid is given by:

σ Y = 1
1 + e−Y

The sigmoid is in the range 0–1. If we have a Dense layer in Keras with one output
node, by applying the sigmoid to it we can obtain a binary classifier that outputs a
valid probability.

20 | Chapter 2: ML Models for Vision

Figure 2-6. The logit and sigmoid functions are inverses of each other (the x-axis in the
first graph and the y-axis in the second are the probability).

The softmax is the multiclass counterpart of the sigmoid. If you have N mutually
exclusive events, and their logits are given by Yj, then softmax(Yj) provides the proba‐
bility of the jth event. Mathematically, the softmax is given by:

S Y j = e
−Y j

Σ
j
e

−Y j

The softmax function is nonlinear and has the effect of squashing low values and
boosting the maximum, as shown in Figure 2-7. Note that the sum of the probabilities
in both instances adds up to 1.0. This property is useful because we can have a Dense
layer in Keras with five output nodes, and by applying the softmax to it, we can obtain
a sound probability distribution.

Figure 2-7. The softmax function squashes low values and boosts the maximum value.

A Linear Model Using Keras | 21

Activation function

It is not sufficient to simply call model.predict(), because model.predict() returns
a weighted sum that is unbounded. We can treat this weighted sum as logits and apply
either the sigmoid or the softmax function (depending on whether we have a binary
classification problem or a multiclass one) to obtain the probability:

pred = model.predict(tf.reshape(img,
 [1, IMG_HEIGHT, IMG_WIDTH, NUM_CHANNELS]))
prob = tf.math.softmax(pred)[pred_label_index]

We can make things more convenient for end users if we add an activation function to
the last layer of the model:

model = tf.keras.Sequential([
 tf.keras.layers.Flatten(input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)),
 tf.keras.layers.Dense(len(CLASS_NAMES), activation='softmax')
])

If we do this, then model.predict() will return five probabilities (not logits), one for
each class. There is no need for the client code to call softmax().

Any layer in Keras can have an activation function applied to its output. Supported
activation functions include linear, sigmoid, and softmax. We’ll look at other activa‐
tion functions later in this chapter.

Optimizer
Keras allows us to choose the optimizer that we wish to use to tune the weights based
on the training dataset. Available optimizers include:

Stochastic gradient descent (SGD)
The most basic optimizer.

Adagrad (adaptive gradients) and Adam
Improve upon the basic optimizer by adding features that allow for faster conver‐
gence.

Ftrl
An optimizer that tends to work well on extremely sparse datasets with many cat‐
egorical features.

Adam is the tried-and-proven choice for deep learning models. We recommend using
Adam as your optimizer for computer vision problems unless you have a strong rea‐
son not to.

SGD and all its variants, including Adam, rely on receiving mini-batches (often just
called batches) of data. For each batch of data, we feed forward through the model
and calculate the error and the gradient, or how much each weight contributed to the
error; then the optimizer updates the weights with this information, ready for the

22 | Chapter 2: ML Models for Vision

next batch of data. Therefore, when we read the training dataset, we have to also
batch it:

train_dataset = (tf.data.TextLineDataset(
 "gs://cloud-ml-data/img/flower_photos/train_set.csv").
 map(decode_csv)).batch(10)

Gradient Descent
Training the neural network actually means using training images and labels to adjust
weights and biases so as to minimize the cross-entropy loss. The cross-entropy is a
function of the model’s weights and biases, the pixels of the training image, and its
known class.

If we compute the extent to which the cross-entropy changes when we adjust each of
the weights independently, we get the partial derivative of the cross-entropy. We can
compute the gradient in different directions from the partial derivative computed for
a given image, label, and current weights and biases. The mathematical property of a
gradient is that it points “up” if, by moving in that direction, the loss increases. Since
we want to go where the cross-entropy is low, we go in the direction where the gradi‐
ent decreases the most. To do this, we update the weights and biases by a fraction of
the gradient. We then do the same thing again and again using the next batches of
training images and labels, in a training loop. The training process is depicted in
Figure 2-8. The hope is that this will converge to a place where the cross-entropy is
minimal, although nothing guarantees that this minimum is unique or even that it is
the global minimum.

Figure 2-8. The training process involves taking small steps in the direction where the loss
decreases the most.

Note that you cannot update your weights and biases by the whole length of the gra‐
dient at each iteration—you would be jumping from one side of the valley to the

A Linear Model Using Keras | 23

other. To get to the bottom, you need to do smaller steps by using only a fraction of
the gradient, typically in the 1/1,000 range. This fraction is called the learning rate;
we’ll discuss it in more detail later in this chapter.

You can compute your gradient on just one example image and update the weights
and biases immediately, but doing so on a batch of, say, 128 images gives a gradient
that better represents the constraints imposed by different example images and is
therefore likely to converge toward the solution faster. The size of the mini-batch is
an adjustable parameter.

This technique is called stochastic gradient descent. It has another, more pragmatic
benefit: working with batches also means working with larger matrices, and these are
usually easier to optimize on GPUs and TPUs (tensor processing units, which are spe‐
cialized hardware to accelerate machine learning operations).

Training loss
The optimizer tries to choose the weights that minimize the model’s error on the
training dataset. For classification problems, there are strong mathematical reasons to
choose cross-entropy as the error to be minimized. To calculate the cross-entropy, we
compare the output probability (pj for the jth class) of the model against the true label
for that class (Lj) and sum this up over all the classes using the formula:

Σ
j

− L jlog p j

In other words, we take the logarithm of the probability for predicting the correct
label. If the model gets it exactly correct, this probability will be 1; log(1) is 0, and so
the loss is 0. If the model gets it exactly wrong, this probability will be 0; log(0) is –
infinity, and so the loss is +infinity, the worst possible loss. Using cross-entropy as
our error measure allows us to tune the weights based on small improvements in the
probability assigned to the correct label.

In order to compute the loss, the optimizer will need to compare the label (returned
by the parse_csvline() function) with the output of model.predict(). The specific
loss you use will depend on how you are representing the label and what the last layer
of your model returns.

If your labels are one-hot encoded (e.g., if the label is encoded as [1 0 0 0 0] for daisy
images), then, you should use categorical cross-entropy as your loss function. This will
show up in your decode_csv() as follows:

def parse_csvline(csv_row):
 record_defaults = ["path", "flower"]
 filename, label_string = tf.io.decode_csv(csv_row, record_defaults)
 img = read_and_decode(filename, [IMG_HEIGHT, IMG_WIDTH])

24 | Chapter 2: ML Models for Vision

 label = tf.math.equal(CLASS_NAMES, label_string)
 return img, label

Because CLASS_NAMES is an array of strings, comparing to a single label will return a
one-hot-encoded array where the Boolean value is 1 in the corresponding position.
You will specify the loss as follows:

tf.keras.losses.CategoricalCrossentropy(from_logits=False)

Note that the constructor takes a parameter which specifies whether the last layer of
the model returns logits of probabilities, or whether you have done a softmax.

On the other hand, if your labels will be represented as integer indices (e.g., 4 indi‐
cates tulips), then your decode_csv() will represent the label by the position of the
correct class:

label = tf.argmax(tf.math.equal(CLASS_NAMES, label_string))

And the loss will be specified as:

tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False)

Again, take care to specify the value of from_logits appropriately.

Why Have Two Ways to Represent the Label?
When we do one-hot encoding, we represent a flower that is a daisy as [1 0 0 0 0] and
a flower that is a tulip as [0 0 0 0 1]. The length of the one-hot-encoded vector is the
number of classes. The sparse representation would be 0 for daisy and 4 for tulip. The
sparse representation takes up less space (especially if there are hundreds or thou‐
sands of possible classes) and is therefore much more efficient.

Why, then, does Keras support two ways to represent labels?

The sparse representation will not work if the problem is a multilabel multiclass prob‐
lem. If an image can contain both daisies and tulips, it is quite straightforward to
encode this using the one-hot-encoded representation: [1 0 0 0 1]. With the sparse
representation, there is no way to represent this scenario unless you are willing to cre‐
ate separate categories for each possible combination of categories.

Therefore, we recommend you use the sparse representation for most problems; but
remember that one-hot encoding the labels and using the CategoricalCrossen
tropy() loss function will help you handle multilabel multiclass situations.

Error metrics
While we can use the cross-entropy loss to minimize the error on the training dataset,
business users will typically want a more understandable error metric. The most

A Linear Model Using Keras | 25

common error metric that is used for this purpose is accuracy, which is simply the
fraction of instances that are classified correctly.

However, the accuracy metric fails when one of the classes is very rare. Suppose you
are trying to identify fake ID cards, and your model has the following performance
characteristics:

 Card identified as fake Card identified as genuine
Actual fake ID cards 8 (TP) 2 (FN)
Actual genuine ID cards 140 (FP) 850 (TN)

The dataset has 990 genuine ID cards and 10 fake ID cards—there is a class imbal‐
ance. Of the fake ID cards, 8 were correctly identified as fake. These are the true posi‐
tives (TP). The accuracy on this dataset would thus be (850 + 8) / 1,000, or 0.858. It
can be immediately seen that because fake ID cards are so rare, the model’s perfor‐
mance on this class has very little impact on its overall accuracy score—even if the
model correctly identified only 2 of the 10 fake ID cards, the accuracy would remain
nearly the same: 0.852. Indeed, the model can achieve an accuracy of 0.99 simply by
identifying all cards as being valid! In such cases, it is common to report two other
metrics:

Precision
The fraction of true positives in the set of identified positives: TP / (TP + FP).
Here, the model has identified 8 true positives and 140 false positives, so the pre‐
cision is only 8/148. This model is very imprecise.

Recall
The fraction of true positives identified among all the positives in the dataset:
TP / (TP + FN). Here, there are 10 positives in the full dataset and the model has
identified 8 of them, so the recall is 0.8.

In addition to the precision and recall, it is also common to report the F1 score,
which is the harmonic mean of the two numbers:

F1 = 2/ 1
precision + 1

recall

In a binary classification problem such as the one we’re considering here (identifying
fake ID cards), the accuracy, precision, and recall all rely on the probability threshold
we choose to determine whether to classify an instance in one category or the other.
By varying the probability threshold, we can obtain different trade-offs in terms of
precision and recall. The resulting curve is called the precision-recall curve (see
Figure 2-9). Another variant of this curve, where the true positive rate is plotted
against the false positive rate, is called the receiver operating characteristic (ROC)

26 | Chapter 2: ML Models for Vision

curve. The area under the ROC curve (commonly shortened as AUC) is also often
used as an aggregate measure of performance.

Figure 2-9. By varying the threshold, it is possible to get different precision and recall
measures.

We normally want to report these metrics not on the training dataset, but on an inde‐
pendent evaluation dataset. This is to verify that the model hasn’t simply memorized
the answers for the training dataset.

Training the Model
Let’s now put all the concepts that we covered in the previous section together to cre‐
ate and train a Keras model.

Creating the datasets
To train a linear model, we need a training dataset. Actually, we want two datasets—a
training dataset and an evaluation dataset—to verify whether the trained model gen‐
eralizes, or works on data that it has not seen during training.

So, we first obtain the training and evaluation datasets:

train_dataset = (tf.data.TextLineDataset(
 "gs://cloud-ml-data/img/flower_photos/train_set.csv").
 map(decode_csv)).batch(10)

eval_dataset = (tf.data.TextLineDataset(
 "gs://cloud-ml-data/img/flower_photos/eval_set.csv").
 map(decode_csv)).batch(10)

where decode_csv() reads and decodes JPEG images:

def decode_csv(csv_row):
 record_defaults = ["path", "flower"]
 filename, label_string = tf.io.decode_csv(csv_row, record_defaults)
 img = read_and_decode(filename, [IMG_HEIGHT, IMG_WIDTH])
 label = tf.argmax(tf.math.equal(CLASS_NAMES, label_string))
 return img, label

A Linear Model Using Keras | 27

The label that is returned in this code is the sparse representation—i.e., the number
4 for tulips, that class’s index—and not the one-hot-encoded one. We batch the train‐
ing dataset because the optimizer class expects batches. We also batch the evaluation
dataset to avoid creating two versions of all our methods (one that operates on
batches, and another that requires one image at a time).

Creating and viewing the model
Now that the datasets have been created, we need to create the Keras model that is to
be trained using those datasets:

model = tf.keras.Sequential([
 tf.keras.layers.Flatten(input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)),
 tf.keras.layers.Dense(len(CLASS_NAMES), activation='softmax')
])
model.compile(optimizer='adam',
 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
 metrics=['accuracy'])

We can view the model using:

tf.keras.utils.plot_model(model, show_shapes=True, show_layer_names=False)

This yields the diagram in Figure 2-10. Note that the input layer takes a batch (that’s
the ?) of [224, 224, 3] images. The question mark indicates that the size of this dimen‐
sion is undefined until runtime; this way, the model can dynamically adapt to any
batch size. The Flatten layer takes this input and returns a batch of 224 * 224 * 3 =
150,528 numbers that are then connected to five outputs in the Dense layer.

Figure 2-10. A Keras linear model to classify flowers.

28 | Chapter 2: ML Models for Vision

We can verify that the Flatten operation does not need any trainable weights, but the
Dense layer has 150,528 * 5 = 752,645 weights that need to be trained by using
model.summary(), which yields:

Model: "sequential_1"

Layer (type) Output Shape Param #
===
flatten_1 (Flatten) (None, 150528) 0

dense_1 (Dense) (None, 5) 752645
===
Total params: 752,645
Trainable params: 752,645
Non-trainable params: 0

Fitting the model

Next, we train the model using model.fit() and pass in the training and validation
datasets:

history = model.fit(train_dataset,
 validation_data=eval_dataset, epochs=10)

Note that we are passing in the training dataset to train on, and the validation dataset
to report accuracy metrics on. We are asking the optimizer to go through the training
data 10 times (an epoch is a full pass through the dataset). We hope that 10 epochs
will be sufficient for the loss to converge, but we should verify this by plotting the
history of the loss and error metrics. We can do that by looking at what the history
has been tracking:

history.history.keys()

We obtain the following list:

['loss', 'accuracy', 'val_loss', 'val_accuracy']

We can then plot the loss and validation loss using:

plt.plot(history.history['val_loss'], ls='dashed');

This yields the graph shown in the lefthand panel of Figure 2-11. Note that the loss
does not go down smoothly; instead, it is quite choppy. This is an indication that our
choices of batch size and optimizer settings can be improved—unfortunately, this
part of the ML process is trial and error. The validation loss goes down, and then
starts to increase. This is an indication that overfitting is starting to happen: the net‐
work has started to memorize details of the training dataset (such details are called
noise) that do not occur in the validation dataset. Either 10 epochs is too long, or we
need to add regularization. Overfitting and regularization are topics that we will
address in more detail in the next section.

A Linear Model Using Keras | 29

Figure 2-11. Loss and accuracy curves on the training (solid) and validation (dashed)
sets.

It is also possible to plot the accuracy on the training dataset and the validation data‐
set using:

training_plot('accuracy', history)

The resulting graph is shown in the righthand panel of Figure 2-11. Notice that the
accuracy on the training dataset goes on increasing the longer we train, while the
accuracy on the validation dataset plateaus.

These lines are also choppy, providing us with the same insights we got from the loss
curves. However, the accuracy that we have obtained (0.4) on the evaluation dataset is
better than what we would have gotten from random chance (0.2). This indicates the
model has been able to learn and become somewhat skillful at the task.

Plotting predictions
We can look at what the model has learned by plotting its predictions on a few images
from the training dataset:

batch_image = tf.reshape(img, [1, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS])
batch_pred = model.predict(batch_image)
pred = batch_pred[0]

Note that we need to take the single image that we have and make it a batch, because
that’s what the model was trained on and what it expects. Fortunately, we don’t need
to pass in exactly 10 images (our batch size was 10 during training) because the
model was designed to take any batch size (recall that the first dimension in
Figure 2-10 was a ?).

The first few predictions from the training and evaluation datasets are shown in
Figure 2-12.

30 | Chapter 2: ML Models for Vision

Figure 2-12. The first few images from the training (top row) and evaluation (bottom
row) datasets—the first image, which is actually a daisy, has been wrongly classified as a
dandelion with a probability of 0.74.

Image Regression
So far we’ve been focusing on the task of image classification. Another computer
vision problem that you might encounter, though it’s far less common, is image
regression. One reason we might want to do this is because we want to measure some‐
thing within the image. The problem here isn’t counting the number of a certain type
of object, which is solved another way that we will discuss in Chapter 11, but instead
measuring a more real-valued property like height, length, volume, etc.

For instance, we may want to predict the rainfall amount from aerial images of cloud
cover over the region of interest. By training an image regression model with tiles of
the cloud images as input (see Figure 2-13, where two tiles are marked) and the pre‐
cipitation amounts on the ground as our labels, we’d be able to learn the mapping
from cloud images to precipitation.

Since we are measuring precipitation amounts in millimeters (mm), our labels are
continuous, real numbers. We could of course reframe this as a classification problem
by bucketing certain amounts of precipitation into categories such as low, medium,
and high, but that may not be relevant for this specific use case.

Fortunately, regression isn’t more complicated than image classification. We merely
have to change our final neural network layer, the Dense output layer, from having a
sigmoid or softmax activation to None, and change the number of units to the num‐
ber of regression predictions we want to make from this one image (in this hypotheti‐
cal case, just one).

A Linear Model Using Keras | 31

Figure 2-13. Image regression to learn to predict rainfall amount—tiles of the cloud cover
image on the left are treated as input, and the labels are measurements of precipitation
on the ground (measured by a rain gauge at the center of the tile). Images courtesy of
NOAA (left) and USGS (right).

The code would look like this:

tf.keras.layers.Dense(units=1, activation=None)

In addition, since this is now a regression problem, we should use a regression loss
function, such as mean squared error (MSE):

tf.keras.losses.MeanSquaredError()

Once our model is trained, at inference time we can provide the model with images of
clouds and it will return predictions for the amount of precipitation on the ground.

A Neural Network Using Keras
In the linear model that we covered in the previous section, we wrote the Keras model
as:

model = tf.keras.Sequential([
 tf.keras.layers.Flatten(input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)),
 tf.keras.layers.Dense(len(CLASS_NAMES), activation='softmax')
])

The output is the softmax of the weighted average of the flattened input pixel values:

Y = softmax B + Σ
pixels

WiXi

32 | Chapter 2: ML Models for Vision

B is the bias tensor, W the weights tensor, X the input tensor, and Y the output tensor.
This is usually written in matrix form as (using § to represent the softmax):

Y = § B + WX

As shown in Figure 2-10, and in the following model summary, there is only one
trainable layer, the Dense one. The Flatten operation is a reshaping operation and
does not contain any trainable weights:

__
Layer (type) Output Shape Param #
===
flatten_1 (Flatten) (None, 150528) 0

dense_1 (Dense) (None, 5) 752645
===

Linear models are great, but they are limited in what they can model. How do we
obtain more complex models?

Neural Networks
One way to get a more complex model is to interpose one or more Dense layers in
between the input and output layers. This results in a machine learning model called
a neural network, for reasons that we will explain shortly.

Hidden layers

Suppose that we interpose one more Dense layer using:

model = tf.keras.Sequential([
 tf.keras.layers.Flatten(input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)),
 tf.keras.layers.Dense(128),
 tf.keras.layers.Dense(len(CLASS_NAMES), activation='softmax')
])

The model now has three layers (see Figure 2-14). A layer with trainable weights,
such as the one we added that is neither the input nor the output layer, is called a
hidden layer.

A Neural Network Using Keras | 33

Figure 2-14. A neural network with one hidden layer.

Mathematically, the output is now:

Y = § B2 + W2 B1 + W1X

Simply wrapping multiple layers like this is pointless, since we might as well have
multiplied the second layer’s weight (W2) into the equation—the model remains a lin‐
ear model. However, if we add a nonlinear activation function A(x) to transform the
output of the hidden layer:

Y = § B2 + W2A B1 + W1X

then the output becomes capable of representing more complex relationships than a
simple linear function.

34 | Chapter 2: ML Models for Vision

In Keras, we introduce the activation function as follows:

model = tf.keras.Sequential([
 tf.keras.layers.Flatten(input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dense(len(CLASS_NAMES), activation='softmax')
])

The rectified linear unit (ReLU) is the most commonly used activation function for
hidden layers (see Figure 2-15). Other commonly used activation functions include
sigmoid, tanh, and elu.

Figure 2-15. A few nonlinear activation functions.

All three of the activation functions shown in Figure 2-15 are loosely based on how
neurons in the human brain fire if the input from the dendrites together exceeds
some minimum threshold (see Figure 2-16). Thus, a model that has a hidden layer
with a nonlinear activation function is called a “neural network.”

A Neural Network Using Keras | 35

Figure 2-16. Neurons in the brain fire when the sum of the inputs exceeds some mini‐
mum threshold. Image credit: Allen Institute for Brain Science, Allen Human Brain
Atlas, available from human.brain-map.org.

The sigmoid is a continuous function that behaves most similarly to how brain neu‐
rons work—the output saturates at both extremes. However, the sigmoid function
suffers from slow convergence because the weight update at each step is proportional
to the gradient, and the gradient near the extremes is very small. The ReLU is more
often used so that the weight updates remain the same size in the active part of the
function. In a Dense layer with a ReLU activation function, the activation function
“fires” if the weighted sum of the inputs is greater than –b, where b is the bias. The
strength of the firing is proportional to the weighted sum of the inputs. The issue
with a ReLU is that it is zero for half its domain. This leads to a problem called dead
ReLUs, where no weight update ever happens. The elu activation function (see
Figure 2-15) solves this problem by having a small exponential negative value instead
of zero. It is, however, expensive to compute because of the exponential. Therefore,
some ML practitioners instead use the Leaky ReLU, which uses a small negative slope.

Training the neural network
Training the neural network is similar to training the linear model. We compile the
model, passing in the optimizer, the loss, and the metrics. Then we call model.fit(),
passing in the datasets:

36 | Chapter 2: ML Models for Vision

http://human.brain-map.org

model.compile(optimizer='adam',
 loss=tf.keras.losses.SparseCategoricalCrossentropy(
 from_logits=False),
 metrics=['accuracy'])
history = model.fit(train_dataset,
 validation_data=eval_dataset,
 epochs=10)

The result, shown in Figure 2-17, reveals that the best validation accuracy that we
have obtained (0.45) is similar to what we obtained with a linear model. The curves
are also not smooth.

Figure 2-17. Loss and accuracy on the training and validation datasets when training a
neural network.

We would normally expect that adding layers to a model will improve the ability of
the model to fit the training data, and thus lower the loss. That is, indeed, the case—
whereas the cross-entropy loss for the linear model is on the order of 10, it is on the
order of 2 for the neural network. However, the accuracies are pretty similar, indicat‐
ing that much of the improvement is obtained by the model driving probabilities like
0.7 to be closer to 1.0 than by getting items misclassified by the linear model correct.

There are still some improvements that we can try, though. For example, we can
change the learning rate and the loss function, and make better use of the validation
dataset. We’ll look at these next.

Learning rate
A gradient descent optimizer works by looking in all directions at each point and
picking the direction where the error function is decreasing the most rapidly. Then it
makes a step in that direction and tries again. For example, in Figure 2-18, starting at

A Neural Network Using Keras | 37

the first point (the circle marked 1), the optimizer looks in two directions (actually 2N

directions, where N is the dimension of the weight tensor to be optimized) and choo‐
ses direction 2, because it is the direction in which the loss function decreases the
fastest. Then, the optimizer updates the weight value by making a step in that direc‐
tion, as indicated by the dashed curved line. The size of this step for every weight
value is proportional to a model hyperparameter called the learning rate.

Figure 2-18. How a gradient descent optimizer works.

As you can see, if the learning rate is too high, the optimizer might skip over the min‐
ima completely. After this step (denoted by the circle marked 2 in the figure), the
optimizer again looks in two directions and then continues to the third point, because
the loss curve is dropping faster in that direction. After this step, the gradient is eval‐
uated again. Now the direction points backward, and the optimizer manages to find
the local minimum in between the second and third points. The global minimum
which was between the first and second steps has, however, been missed.

In order to not skip over minima, we should use a small value for the learning rate.
But if the learning rate is too small, the model will get stuck in a local minimum. Also,
the smaller the value of the learning rate, the slower the model will converge. Thus,
there’s a trade-off between not missing minima and getting the model to converge
quickly.

The default learning rate for the Adam optimizer is 0.001. We can change it by chang‐
ing the optimizer passed into the compile() function:

model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001),
 loss=..., metrics=...)

Repeating the training with this lower training rate, we get the same end result in
terms of accuracy, but the curves are noticeably less choppy (see Figure 2-19).

38 | Chapter 2: ML Models for Vision

1 A good non-mathematical explanation of this phenomenon can be found at DataCamp.com.

Figure 2-19. The loss and accuracy curves when the learning rate is lowered to 0.0001.

Regularization
It is also worth noting that the number of trainable parameters in the neural network
is 128 times the number of trainable parameters in the linear model (19 million ver‐
sus 750,000). Yet, we have only about 3,700 images. The more complex model might
perform better, but we’d probably need much more data—on the order of hundreds of
thousands of images. Later in this book, we will look at data augmentation techniques
to make the most out of the data that we do have.

Given that we have a relatively small dataset for the complexity of the model that we
are using, it is possible that the model will start to use individual trainable weights to
“memorize” the classification answers for individual images in the training dataset—
this is the overfitting that we can see happening in Figure 2-19 (the loss on the valida‐
tion set started to increase even though the training accuracy was still decreasing).
When this happens, the weight values start to become highly tuned to very specific
pixel values and attain very high values.1 Therefore, we can reduce the incidence of
overfitting by changing the loss to apply a penalty on the weight values themselves.
This sort of penalty applied to the loss function is called regularization.

Two common forms are:

loss = cross−entropy + Σ
i

wi

A Neural Network Using Keras | 39

https://oreil.ly/N2qH5

and:

loss = cross−entropy + Σ
i
wi

2

The first type of penalty is called an L1 regularization term, and the second is called
an L2 regularization term. Either penalty will cause the optimizer to prefer smaller
weight values. L1 regularization drives many of the weight values to zero but is more
tolerant of individual large weight values than L2 regularization, which tends to drive
all the weights to small but nonzero values. The mathematical reasons why this is the
case are beyond the scope of this book, but it’s useful to understand that we use L1 if
we want a compact model (because we can prune zero weights), whereas we use L2 if
we want to limit overfitting to the maximum possible.

This is how we apply a regularization term to the Dense layers:

regularizer = tf.keras.regularizers.l1_l2(0, 0.001)
model = tf.keras.Sequential([
 tf.keras.layers.Flatten(input_shape=(
 IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS)),
 tf.keras.layers.Dense(num_hidden,
 kernel_regularizer=regularizer,
 activation=tf.keras.activations.relu),
 tf.keras.layers.Dense(len(CLASS_NAMES),
 kernel_regularizer=regularizer,
 activation='softmax')
])

With L2 regularization turned on, we see from Figure 2-20 that the loss values are
higher (because they include the penalty term). However, it is clear that overfitting is
still happening after epoch 6. This indicates that we need to increase the regulariza‐
tion amount. Again, this is trial and error.

40 | Chapter 2: ML Models for Vision

Figure 2-20. The loss and accuracy curves when L2 regularization is added.

Early stopping
Look carefully at the righthand panel in Figure 2-20. Both the training and validation
set accuracies increase smoothly until the sixth epoch. After that, even though the
training set accuracy continues to increase, the validation accuracy starts to drop.
This is a classic sign that the model has stopped generalizing to unseen data, and is
now starting to fit noise in the training dataset.

It would be good if we could stop the training once the validation accuracy stops
increasing. In order to do that, we pass in a callback to the model.fit() function:

history = model.fit(train_dataset,
 validation_data=eval_dataset,
 epochs=10,
 callbacks=[tf.keras.callbacks.EarlyStopping(patience=1)]
)

Because convergence can be a bit bumpy, the patience parameter allows us to config‐
ure the number of epochs for which we want the validation accuracy to not decrease
before training is stopped.

Add in the EarlyStopping() callback only after you have tuned the
learning rate and regularization to get smooth, well-behaved train‐
ing curves. If your training curves are choppy, it is possible that
you will miss out on obtaining better performance by stopping
early.

A Neural Network Using Keras | 41

Hyperparameter tuning
We chose a number of parameters for our model: the number of hidden nodes, the
learning rate, the L2 regularization, and so on. How do we know that these are opti‐
mal? We don’t. We need to tune these hyperparameters.

One way to do this is to use the Keras Tuner. To use the Keras Tuner, we implement
the model-building function to use hyperparameters (the full code is in a
02_ml_models/02b_neural_network.ipynb on GitHub):

import kerastuner as kt

parameterize to the values in the previous cell
def build_model(hp):
 lrate = hp.Float('lrate', 1e-4, 1e-1, sampling='log')
 l1 = 0
 l2 = hp.Choice('l2', values=[0.0, 1e-1, 1e-2, 1e-3, 1e-4])
 num_hidden = hp.Int('num_hidden', 32, 256, 32)

 regularizer = tf.keras.regularizers.l1_l2(l1, l2)

 # NN with one hidden layer
 model = tf.keras.Sequential([
 tf.keras.layers.Flatten(
 input_shape=(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS)),
 tf.keras.layers.Dense(num_hidden,
 kernel_regularizer=regularizer,
 activation=tf.keras.activations.relu),
 tf.keras.layers.Dense(len(CLASS_NAMES),
 kernel_regularizer=regularizer,
 activation='softmax')
])
 model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=lrate),
 loss=tf.keras.losses.SparseCategoricalCrossentropy(
 from_logits=False),
 metrics=['accuracy'])
 return model

As you can see, we defined the space from which the hyperparameters are drawn. The
learning rate (lrate) is a floating-point value between 1e-4 and 1e-1, chosen logarith‐
mically (not linearly). The L2 regularization value is chosen from a set of five prede‐
fined values (0.0, 1e-1, 1e-2, 1e-3, and 1e-4). The number of hidden nodes
(num_hidden) is an integer chosen from the range 32 to 256 in increments of 32.
These values are then used in the model-building code as normal.

We pass the build_model() function into a Keras Tuner optimization algorithm. Sev‐
eral algorithms are supported, but Bayesian optimization is an old standby that works
well for computer vision problems:

42 | Chapter 2: ML Models for Vision

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/02_ml_models/02b_neural_network.ipynb
https://keras-team.github.io/keras-tuner/documentation/tuners/

tuner = kt.BayesianOptimization(
 build_model,
 objective=kt.Objective('val_accuracy', 'max'),
 max_trials=10,
 num_initial_points=2,
 overwrite=False) # True to start afresh

Here, we are specifying that our objective is to maximize the validation accuracy and
that we want the Bayesian optimizer to run 10 trials starting from 2 randomly chosen
seed points. The tuner can pick up where it left off, and we are asking Keras to do so
by telling it to reuse information learned in preexisting trials and not start with a
blank slate.

Having created the tuner, we can then run the search:

tuner.search(
 train_dataset, validation_data=eval_dataset,
 epochs=5,
 callbacks=[tf.keras.callbacks.EarlyStopping(patience=1)]
)

At the end of the run, we can get the top N trials (the ones that ended with the highest
validation accuracy) using:

topN = 2
for x in range(topN):
 print(tuner.get_best_hyperparameters(topN)[x].values)
 print(tuner.get_best_models(topN)[x].summary())

When we did hyperparameter tuning for the 5-flowers problem, we determined that
the best set of parameters was:

{'lrate': 0.00017013245197465996, 'l2': 0.0, 'num_hidden': 64}

The best validation accuracy obtained was 0.46.

Deep Neural Networks
The linear model gave us an accuracy of 0.4. The neural network with one hidden
layer gave us an accuracy of 0.46. What if we add more hidden layers?

A deep neural network (DNN) is a neural network with more than one hidden layer.
Each time we add a layer, the number of trainable parameters increases. Therefore,
we will need a larger dataset. We still have only 3,700 flower images, but, as you’ll see,
there are a few tricks (namely dropout and batch normalization) that we can use to
limit the amount of overfitting that happens.

A Neural Network Using Keras | 43

Building a DNN
We can parameterize the creation of a DNN as follows:

def train_and_evaluate(batch_size = 32,
 lrate = 0.0001,
 l1 = 0,
 l2 = 0.001,
 num_hidden = [64, 16]):
 ...

 # NN with multiple hidden layers
 layers = [
 tf.keras.layers.Flatten(
 input_shape=(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS),
 name='input_pixels')
]
 layers = layers + [
 tf.keras.layers.Dense(nodes,
 kernel_regularizer=regularizer,
 activation=tf.keras.activations.relu,
 name='hidden_dense_{}'.format(hno))
 for hno, nodes in enumerate(num_hidden)
]
 layers = layers + [
 tf.keras.layers.Dense(len(CLASS_NAMES),
 kernel_regularizer=regularizer,
 activation='softmax',
 name='flower_prob')
]

 model = tf.keras.Sequential(layers, name='flower_classification')

Notice that we are providing readable names for the layers. This shows up when we
print a summary of the model and is also useful to get a layer by name. For example,
here is the model where num_hidden is [64, 16]:

Model: "sequential_4"

Layer (type) Output Shape Param #
===
input_pixels (Flatten) (None, 150528) 0

hidden_dense_0 (Dense) (None, 64) 9633856

hidden_dense_1 (Dense) (None, 16) 1040

flower_prob (Dense) (None, 5) 85
===
Total params: 9,634,981
Trainable params: 9,634,981
Non-trainable params: 0

44 | Chapter 2: ML Models for Vision

The model, once created, is trained just as before. Unfortunately, as shown in
Figure 2-21, the resulting validation accuracy is worse than what was obtained with
either the linear model or the neural network.

Figure 2-21. The loss and accuracy curves for a deep neural network with two hidden
layers.

The 5-flowers dataset is too small for us to take advantage of the additional modeling
capability provided by the DNN’s extra layer. Recall that we had a similar situation
when we started with the neural network. Initially, we did not do better than the lin‐
ear model, but by adding regularization and lowering the learning rate we were able
to get better performance.

Are there some tricks that we can apply to improve the performance of the DNN?
Glad you asked! There are two ideas—dropout layers and batch normalization—that
are worth trying.

Dropout
Dropout is one of the oldest regularization techniques in deep learning. At each train‐
ing iteration, the dropout layer drops random neurons from the network, with a
probability p (typically 25% to 50%). In practice, the dropped neurons’ outputs are set
to zero. The net result is that these neurons will not participate in the loss computa‐
tion this time around, and they will not get weight updates (see Figure 2-22). Differ‐
ent neurons will be dropped at each training iteration.

A Neural Network Using Keras | 45

Figure 2-22. Dropout layers are applied during training—here, with a dropout rate of
0.4, 40% of the nodes in the layer are randomly dropped at each step of training.

When testing the performance of the network, all the neurons need to be considered
(dropout rate=0). Keras does this automatically, so all you have to do is add a
tf.keras.layers.Dropout layer. It will automatically have the correct behavior at
training and evaluation time: during training, layers are randomly dropped; but dur‐
ing evaluation and prediction, no layers are dropped.

The theory behind dropout is that neural networks have so much
freedom between their numerous layers that it is entirely possible
for one layer to evolve a bad behavior and for the next layer to
compensate for it. This is not an ideal use of neurons. With drop‐
out, there is a high probability that the neurons “fixing” the prob‐
lem will not be there in a given training round. The bad behavior of
the offending layer therefore becomes obvious, and weights evolve
toward a better behavior. Dropout also helps spread the informa‐
tion flow throughout the network, giving all weights fairly equal
amounts of training, which can help keep the model balanced.

Batch normalization
Our input pixel values are in the range [0, 1], and this is compatible with the dynamic
range of the typical activation functions and optimizers. However, once we add a hid‐
den layer, the resulting output values will no longer lie in the dynamic range of the
activation function for subsequent layers (see Figure 2-23). When this happens, the
neuron’s output is zero, and because moving a small amount in either direction makes

46 | Chapter 2: ML Models for Vision

no difference, the gradient is zero. There is no way for the network to escape from the
dead zone.

Figure 2-23. The output values of hidden layer neurons may not be in the dynamic range
of the activation function. They might be (A) too far to the left (after sigmoid activation,
this neuron almost always outputs zero), (B) too narrow (after sigmoid activation, this
neuron never outputs a clear 0 or 1), or (C) not too bad (after sigmoid activation, this
neuron will output a fair range of outputs between 0 and 1 across a mini-batch).

To fix this, batch normalization normalizes neuron outputs across a training batch of
data by subtracting the average and dividing by the standard deviation. However,
doing just that could be swinging the pendulum too far in one direction—with a per‐
fectly centered and normally wide distribution everywhere, all neurons would have
the same behavior. The trick is to introduce two additional learnable parameters per
neuron, called scale and center, and to normalize the input data to the neuron using
these values:

normalized = input − center
scale

This way, the network decides, through machine learning, how much centering and
rescaling to apply at each neuron. In Keras, you can selectively use one or the other.
For example:

tf.keras.layers.BatchNormalization(scale=False, center=True)

The problem with batch normalization is that at prediction time you do not have
training batches over which you can compute the statistics of your neurons’ outputs,
but you still need those values. Therefore, during training, neurons’ output statistics

A Neural Network Using Keras | 47

are computed across a “sufficient” number of batches using a running exponential
average. These stats are then used at inference time.

The good news is that in Keras you can use a tf.keras.layers.BatchNormalization
layer and all this accounting will happen automatically. When using batch normaliza‐
tion, remember that:

• Batch normalization is performed on the output of a layer before the activation
function is applied. So, rather than set activation='relu' in the Dense layer’s
constructor, we’d omit the activation function there and then add a separate
Activation layer.

• If you use center=True in batch norm, you do not need biases in your layer. The
batch norm offset plays the role of a bias.

• If you use an activation function that is scale-invariant (i.e., does not change
shape if you zoom in on it), then you can set scale=False. ReLu is scale-
invariant. Sigmoid is not.

With dropout and batch normalization, the hidden layers now become:

for hno, nodes in enumerate(num_hidden):
 layers.extend([
 tf.keras.layers.Dense(nodes,
 kernel_regularizer=regularizer,
 name='hidden_dense_{}'.format(hno)),
 tf.keras.layers.BatchNormalization(scale=False, # ReLU
 center=False, # have bias in Dense
 name='batchnorm_dense_{}'.format(hno)),
 # move activation to come after batch norm
 tf.keras.layers.Activation('relu',
 name='relu_dense_{}'.format(hno)),
 tf.keras.layers.Dropout(rate=0.4,
 name='dropout_dense_{}'.format(hno)),

])

 layers.append(
 tf.keras.layers.Dense(len(CLASS_NAMES),
 kernel_regularizer=regularizer,
 activation='softmax',
 name='flower_prob')
)

48 | Chapter 2: ML Models for Vision

Note that we have moved the activation out of the Dense layer and into a separate
layer that comes after batch normalization:

hidden_dense_0 (Dense) (None, 64) 9633856

batchnorm_dense_0 (BatchNorm (None, 64) 128

relu_dense_0 (Activation) (None, 64) 0

dropout_dense_0 (Dropout) (None, 64) 0

The resulting training indicates that these two tricks have improved the ability of the
model to generalize and to converge faster, as shown in Figure 2-24. We now get an
accuracy of 0.48, as opposed to 0.40 without batch norm and dropout. Fundamen‐
tally, though, the DNN is not much better than a linear model (0.48 vs. 0.46), because
a dense network is not the correct way to go deeper.

Figure 2-24. The loss and accuracy curves for a deep neural network with two hidden
layers with dropout and batch normalization.

The curves are not yet well behaved (note the choppiness of the validation curves). To
smooth them out, we will have to experiment with different values of regularization
and then do hyperparameter tuning as before. In general, you’ll have to experiment
with all of these ideas (regularization, early stopping, dropout, batch normalization)
for any model you pick. In the rest of the book, we’ll simply show the code, but, in
practice, model creation will always be followed by a period of experimentation and
hyperparameter tuning.

A Neural Network Using Keras | 49

Summary
In this chapter, we explored how to build a simple data pipeline that reads image files
and creates 2D floating-point arrays. These arrays were used as inputs into fully con‐
nected machine learning models. We started with a linear model, and then added
more Dense layers. We discovered that regularization was important to limit overfit‐
ting, and that changing the learning rate had an impact on learnability.

The models that we built in this chapter did not take advantage of the special struc‐
ture of images, where adjacent pixels are highly correlated. That is what we will do in
Chapter 3. Nevertheless, the tools that we introduced in this chapter for reading
images, visualizing them, creating ML models, and predicting using ML models will
remain applicable even as the models themselves become more complex. The techni‐
ques that you learned about here—hidden layers, changing the learning rate, regulari‐
zation, early stopping, hyperparameter tuning, dropout, and batch normalization—
are used in all the models we discuss in this book.

This chapter introduced a lot of important terminology. For quick reference, a short
glossary of terms follows.

Glossary
Accuracy

An error metric that measures the fraction of correct predictions in a classifica‐
tion model: (TP + TN) / (TP + FP + TN + FN) where, for example, TP is true
positives.

Activation function
A function applied to the weighted sum of the inputs to a node in a neural net‐
work. This is the way that nonlinearity is added to a neural network. Common
activation functions include ReLU and sigmoid.

AUC
Area under the curve of true positive rate plotted against false positive rate. The
AUC is a threshold-independent error metric.

Batch or mini-batch
Training is always performed on batches of training data and labels. Doing so
helps the algorithm converge. The batch dimension is typically the first dimen‐
sion of data tensors. For example, a tensor of shape [100, 192, 192, 3] contains
100 images of 192x192 pixels with three values per pixel (RGB).

Batch normalization
Adding two additional learnable parameters per neuron to normalize the input
data to the neuron during training.

50 | Chapter 2: ML Models for Vision

Cross-entropy loss
A special loss function often used in classifiers.

Dense layer
A layer of neurons where each neuron is connected to all the neurons in the pre‐
vious layer.

Dropout
A regularization technique in deep learning where, during each training itera‐
tion, randomly chosen neurons from the network are dropped.

Early stopping
Stopping a training run when the validation set error starts to get worse.

Epoch
A full pass through the training dataset during training.

Error metric
The error function comparing neural network outputs to the correct answers.
The error on the evaluation dataset is what is reported. Common error metrics
include precision, recall, accuracy, and AUC.

Features
A term used to refer to the inputs of a neural network. In modern image models,
the pixel values form the features.

Feature engineering
The art of figuring out which parts of a dataset (or combinations of parts) to feed
into a neural network to get good predictions. In modern image models, no fea‐
ture engineering is required.

Flattening
Converting a multidimensional tensor to a 1D tensor that contains all the values.

Hyperparameter tuning
An “outer” optimization loop where multiple models with different values of
model hyperparameters (like learning rate and number of nodes) are trained, and
the best of these models chosen. In the “inner” optimization loop, which we call
the training loop, the model’s parameters (weights and biases) are optimized.

Labels
Another name for “classes,” or correct answers in a supervised classification
problem.

Learning rate
The fraction of the gradient by which weights and biases are updated at each iter‐
ation of the training loop.

Glossary | 51

Logits
The outputs of a layer of neurons before the activation function is applied. The
term comes from the logistic function, a.k.a. the sigmoid function, which used to
be the most popular activation function. “Neuron outputs before logistic func‐
tion” was shortened to “logits.”

Loss
The error function comparing neural network outputs to the correct answers.

Neuron
The most basic unit of a neural network, which computes the weighted sum of its
inputs, adds a bias, and feeds the result through an activation function. The loss
on the training dataset is what is minimized during training.

One-hot encoding
A representation of categorical values as binary vectors. For example, class 3 out
of 5 is encoded as a vector of five elements, which are all 0s except the third one,
which is a 1: [0 0 1 0 0].

Precision
An error metric that measures the fraction of true positives in the set of identified
positives: TP / (TP + FP).

Recall
An error metric that measures the fraction of true positives identified among all
the positives in the dataset: TP / (TP + FN).

Regularization
A penalty imposed on weights or model function during training to limit the
amount of overfitting. L1 regularization drives many of the weight values to zero
but is more tolerant of individual large weight values than L2 regularization,
which tends to drive all the weights to small but nonzero values.

ReLU
Rectified linear unit. A popular activation function for neurons.

Sigmoid
An activation function that acts on an unbounded scalar and converts it into a
value that lies between [0,1]. It is used as the last step of a binary classifier.

Softmax
A special activation function that acts on a vector. It increases the difference
between the largest component and all others, and also normalizes the vector to
have a sum of 1 so that it can be interpreted as a vector of probabilities. Used as
the last step in multiclass classifiers.

52 | Chapter 2: ML Models for Vision

Tensor
A tensor is like a matrix but with an arbitrary number of dimensions. A 1D ten‐
sor is a vector, a 2D tensor is a matrix, and you can have tensors with three, four,
five or more dimensions. In this book, we will use the term tensor to refer to the
numerical type that supports GPU-accelerated TensorFlow operations.

Training
Optimizing the parameters of a machine learning model to attain lower loss on a
training dataset.

Glossary | 53

CHAPTER 3

Image Vision

In Chapter 2, we looked at machine learning models that treat pixels as being inde‐
pendent inputs. Traditional fully connected neural network layers perform poorly on
images because they do not take advantage of the fact that adjacent pixels are highly
correlated (see Figure 3-1). Moreover, fully connecting multiple layers does not make
any special provisions for the 2D hierarchical nature of images. Pixels close to each
other work together to create shapes (such as lines and arcs), and these shapes them‐
selves work together to create recognizable parts of an object (such as the stem and
petals of a flower).

In this chapter, we will remedy this by looking at techniques and model architectures
that take advantage of the special properties of images.

The code for this chapter is in the 03_image_models folder of the
book’s GitHub repository. We will provide file names for code sam‐
ples and notebooks where applicable.

55

https://github.com/GoogleCloudPlatform/practical-ml-vision-book

Figure 3-1. Applying a fully connected layer to all the pixels of an image treats the pixels
as independent inputs and ignores that images have adjacent pixels working together to
create shapes.

Pretrained Embeddings
The deep neural network that we developed in Chapter 2 had two hidden layers, one
with 64 nodes and the other with 16 nodes. One way to think about this network
architecture is shown in Figure 3-2. In some sense, all the information contained in
the input image is being represented by the penultimate layer, whose output consists
of 16 numbers. These 16 numbers that provide a representation of the image are
called an embedding. Of course, earlier layers also capture information from the input
image, but those are typically not used as embeddings because they are missing some
of the hierarchical information.

In this section, we will discuss how to create an embedding (as distinct from a classi‐
fication model), and how to use the embedding to train models on different datasets
using two different approaches, transfer learning and fine-tuning.

56 | Chapter 3: Image Vision

Figure 3-2. The 16 numbers that form the embedding provide a representation of all the
information in the entire image.

Pretrained Model
The embedding is created by applying a set of mathematical operations to the input
image. Recall that we reiterated in Chapter 2 that the model accuracy that we were
getting, on the order of 0.45, was low because our dataset wasn’t large enough to sup‐
port the many millions of trainable weights in our fully connected deep learning
model. What if we were to repurpose the embedding creation part from a model that
has been trained on a much larger dataset? We can’t repurpose the whole model,
because that model will not have been trained to classify flowers. However, we can
throw away the last layer, or prediction head, of that model and replace it with our
own. The repurposed part of the model can be pretrained from a very large, general-
purpose dataset and the knowledge can then be transferred to the actual dataset that
we want to classify. Looking back to Figure 3-2, we can replace the 64-node layer in
the box marked “pretrained model” with the first set of layers of a model that has
been trained on a much larger dataset.

Pretrained models are models that are trained on large datasets and made available to
be used as a way to create embeddings. For example, the MobileNet model is a model
with 1–4 million parameters that was trained on the ImageNet (ILSVRC) dataset,
which consists of millions of images corresponding to hundreds of categories that
were scraped from the web. The resulting embedding therefore has the ability to effi‐
ciently compress the information found in a wide variety of images. As long as the

Pretrained Embeddings | 57

https://oreil.ly/JNk0O
https://oreil.ly/B9Q85

images we want to classify are similar in nature to the ones that MobileNet was
trained on, the embeddings from MobileNet should give us a great pretrained embed‐
ding that we can use as a starting point to train a model on our own smaller dataset.

A pretrained MobileNet is available on TensorFlow Hub, and we can easily load it as a
Keras layer by passing in the URL to the trained model:

import tensorflow_hub as hub
huburl= "https://tfhub.dev/google/imagenet/\
 mobilenet_v2_100_224/feature_vector/4"
hub.KerasLayer(
 handle=huburl,
 input_shape=(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS),
 trainable=False,
 name='mobilenet_embedding')

In this code snippet, we imported the package tensorflow_hub and created a
hub.KerasLayer, passing in the URL and the input shape of our images. Critically, we
specify that this layer is not trainable, and should be assumed to be pretrained. By
doing so, we ensure that its weights will not be modified based on the flowers data; it
will be read-only.

Transfer Learning
The rest of the model is similar to the DNN models that we created previously. Here’s
a model that uses the pretrained model loaded from TensorFlow Hub as its first layer
(the full code is available in 03a_transfer_learning.ipynb):

layers = [
 hub.KerasLayer(..., name='mobilenet_embedding'),
 tf.keras.layers.Dense(units=16,
 activation='relu',
 name='dense_hidden'),
 tf.keras.layers.Dense(units=len(CLASS_NAMES),
 activation='softmax',
 name='flower_prob')
]
model = tf.keras.Sequential(layers, name='flower_classification')
...

The resulting model summary is as follows:

Model: "flower_classification"

Layer (type) Output Shape Param #
===
mobilenet_embedding (KerasLa (None, 1280) 2257984

dense_hidden (Dense) (None, 16) 20496

flower_prob (Dense) (None, 5) 85

58 | Chapter 3: Image Vision

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03a_transfer_learning.ipynb

===
Total params: 2,278,565
Trainable params: 20,581
Non-trainable params: 2,257,984

Note that the first layer, which we called mobilenet_embedding, has 2.26 million
parameters, but they are not trainable. Only 20,581 parameters are trainable: 1,280 *
16 weights + 16 biases = 20,496 from the hidden dense layer, plus 16 * 5 weights + 5
biases = 85 from the dense layer to the five output nodes. So despite the 5-flowers
dataset not being large enough to train millions of parameters, it is large enough to
train just 20K parameters.

This process of training a model by replacing its input layer with an image embed‐
ding is called transfer learning, because we have transferred the knowledge learned
from a much larger dataset by the MobileNet creators to our problem.

Because we are replacing the input layer of our model with the Hub layer, it’s impor‐
tant to make sure that our data pipeline provides data in the format expected by the
Hub layer. All image models in TensorFlow Hub use a common image format and
expect pixel values as floats in the range [0,1). The image-reading code that we used
in Chapter 2 scales the JPEG images to lie within this range, so we’re OK.

Pretrained Models in Keras
We’ve just showed you how to load a pretrained model from TensorFlow Hub. The
most popular pretrained models are available directly in Keras. They can be loaded by
instantiating the corresponding class in tf.keras.applications.*. For example:

pretrained_model = tf.keras.applications.MobileNetV2(
 weights='imagenet',include_top=False,
 input_shape=[IMG_HEIGHT, IMG_WIDTH, 3])
pretrained_model.trainable = False # For transfer learning

The following code uses the pretrained model to build a custom classifier, by attach‐
ing a custom classification head to it:

model = tf.keras.Sequential([
 # convert image format from int [0,255]
 # to the format expected by this model
 tf.keras.layers.Lambda(
 lambda data: tf.keras.applications.mobilenet.preprocess_input(
 tf.cast(data, tf.float32)),
 input_shape=[IMG_HEIGHT, IMG_WIDTH, 3]),
 pretrained_model,
 tf.keras.layers.GlobalAveragePooling2D(),
 tf.keras.layers.Dense(256, activation='relu'),
 tf.keras.layers.Dense(len(CLASSES),
 activation='softmax')
])

Pretrained Embeddings | 59

Notice how the code snippet handles the pretrained model’s expected inputs and
outputs:

1. Every model in tf.keras.applications.* expects its input images to have pixel
values in a specific range, such as [0, 1] or [–1, 1]. A format conversion function
named tf.keras.applications.<MODEL_NAME>.preprocess_input() is pro‐
vided for every model. It converts images with pixel values that are floats in the
range [0, 255] into the pixel format expected by the pretrained model. If you load
images using the tf.io.decode_image() operation, which returns pixels with a
uint8 format in the range [0, 255], a cast to float is necessary before applying
preprocess_input().

This is different from the image format convention used
in TensorFlow Hub. All the image models in TensorFlow
Hub expect pixel values as floats in the range [0, 1). The
easiest way to obtain images in that format is to use
tf.io.decode_image() followed by tf.image.con

vert_image_dtype(..., tf.float32).

2. With the option include_top=False, all the models in tf.keras.applica
tions.* return a 3D feature map. It’s the user’s responsibility to compute a 1D
feature vector from it so that a classification head with dense layers can be
appended. You can use tf.keras.layers.GlobalAveragePooling2D() or
tf.keras.layers.Flatten() for this purpose.

This is again different from the way models in TensorFlow
Hub typically return embeddings. All models in Tensor‐
Flow Hub that include feature_vector in their name
already return a 1D feature vector, not a 3D feature map.
A dense layer can be added immediately after them to
implement a custom classification head.

Training this model is identical to training the DNN in the previous section (see
03a_transfer_learning.ipynb in the GitHub repository for details). The resulting loss
and accuracy curves are shown in Figure 3-3.

60 | Chapter 3: Image Vision

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03a_transfer_learning.ipynb

Figure 3-3. The loss and accuracy curves for a deep neural network with two hidden lay‐
ers with dropout and batch normalization.

Rather impressively, we get an accuracy of 0.9 using transfer learning (see Figure 3-4),
whereas we got to only 0.48 when training a fully connected deep neural network
from scratch on our data. Transfer learning is what we recommend any time your
dataset is relatively small. Only when your dataset starts to exceed about five thou‐
sand images per label should you start to consider training from scratch. Later in this
chapter, we will see techniques and architectures that allow us to get even higher
accuracies provided we have a large dataset and can train from scratch.

The probability associated with the daisy prediction for the first
image in the second row might come as a surprise. How can the
probability be 0.41? Shouldn’t it be greater than 0.5? Recall that this
is not a binary prediction problem. There are five possible classes,
and if the output probabilities are [0.41, 0.39, 0.1, 0.1, 0.1], the arg
max will correspond to daisy and the probability will be 0.41.

Pretrained Embeddings | 61

Figure 3-4. Predictions by the MobileNet transfer learning model on some of the images
in the evaluation dataset.

Fine-Tuning
During transfer learning, we took all the layers that comprise MobileNet and used
them as is. We did so by making the layers non-trainable. Only the last two dense lay‐
ers were tuned on the 5-flowers dataset.

In many instances, we might be able to get better results if we allow our training loop
to also adapt the pretrained layers. This technique is called fine-tuning. The pre‐
trained weights are used as initial values for the weights of the neural network (nor‐
mally, neural network training starts with the weights initialized to random values).

In theory, all that is needed to switch from transfer learning to fine-tuning is to flip
the trainable flag from False to True when loading a pretrained model and train on
your data. In practice, however, you will often notice training curves like the one in
Figure 3-5 when fine-tuning a pretrained model.

62 | Chapter 3: Image Vision

Figure 3-5. The training and validation loss curves when fine-tuning with a badly chosen
learning rate schedule.

The training curve here shows that the model mathematically converges. However, its
performance on the validation data is poor and initially gets worse before somewhat
recovering. With a learning rate set too high, the pretrained weights are being
changed in large steps and all the information learned during pretraining is lost.
Finding a learning rate that works can be tricky—set the learning rate too low and
convergence is very slow, too high and pretrained weights are lost.

There are two techniques that can be used to solve this problem: a learning rate
schedule and layer-wise learning rates. The code showcasing both techniques is avail‐
able in 03b_finetune_MOBILENETV2_flowers5.ipynb.

Learning rate schedule
The most traditional learning rate schedule when training neural networks is to have
the learning rate start high and then decay exponentially throughout the training.
When fine-tuning a pretrained model, a warm-up ramp period can be added (see
Figure 3-6).

Pretrained Embeddings | 63

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03b_finetune_MOBILENETV2_flowers5.ipynb

Figure 3-6. On the left, a traditional learning rate schedule with exponential decay; on
the right, a learning rate schedule that features a warm-up ramp, which is more appro‐
priate for fine-tuning.

Figure 3-7 shows the loss curves with this new learning rate schedule.

Figure 3-7. Fine-tuning with an adapted learning rate schedule.

Notice that there is still a hiccup on the validation loss curve, but it is nowhere as bad
as previously (compare with Figure 3-5). This leads us to the second way to choose
learning rates for fine-tuning.

Differential learning rate
Another good trade-off is to apply a differential learning rate, whereby we use a low
learning rate for the pretrained layers and a normal learning rate for the layers of our
custom classification head.

In fact, we can extend the idea of a differential learning rate within the pretrained lay‐
ers themselves—we can multiply the learning rate by a factor that varies based on

64 | Chapter 3: Image Vision

layer depth, gradually increasing the per-layer learning rate and finishing with the full
learning rate for the classification head.

In order to apply a complex differential learning rate like this in Keras, we need to
write a custom optimizer. But fortunately, an open source Python package called
AdamW exists that we can use by specifying a learning rate multiplier for different
layers (see 03_image_models/03b_finetune_MOBILENETV2_flowers5.ipynb in the
GitHub repository for the complete code):

mult_by_layer={
 'block1_': 0.1,
 'block2_': 0.15,
 'block3_': 0.2,
 ... # blocks 4 to 11 here
 'block12_': 0.8,
 'block13_': 0.9,
 'block14_': 0.95,
 'flower_prob': 1.0, # for the classification head
}

optimizer = AdamW(lr=LR_MAX, model=model,
 lr_multipliers=mult_by_layer)

How did we know what the names of the layers in the loaded pre‐
trained model were? We ran the code without any name at first,
with lr_multipliers={}. The custom optimizer prints the names
of all the layers when run. We then found a substring of the layer
names that identified the depth of the layer in the network. The
custom optimizer matches layer names by the substrings passed to
its lr_multipliers argument.

With both the per-layer learning rate and a learning rate schedule with a ramp-up, we
can push the accuracy of a fine-tuned MobileNetV2 on the tf_flowers (5-flowers)
dataset to 0.92, versus 0.91 with the ramp-up only and 0.9 with transfer learning only
(see the code in 03b_finetune_MOBILENETV2_flowers5.ipynb).

The gains from fine-tuning here are small because the tf_flowers dataset is tiny. We
need a more challenging benchmark for the advanced architectures we are about to
explore. In the rest of this chapter, we will use the 104 flowers dataset.

The 104 Flowers Dataset
The 104 flowers dataset has more than 23,000 labeled images of 104 kinds of flowers.
It was assembled for the “Petals to the Metal” competition on Kaggle from various
publicly available image datasets. Some samples are shown in Figure 3-8.

Pretrained Embeddings | 65

https://oreil.ly/z1IfS
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03b_finetune_MOBILENETV2_flowers5.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03b_finetune_MOBILENETV2_flowers5.ipynb
https://oreil.ly/s232c

Figure 3-8. An excerpt from the 104 flowers dataset.

We will use this dataset for the remainder of this chapter. Being a larger dataset, it also
requires more resources to train on. That is why all the examples in the rest of the
chapter are set up to run both on GPUs and TPUs (more information on TPUs is pro‐
vided in Chapter 7). The data is stored in TFRecords, for reasons we explain in
Chapter 5.

This dataset is also challenging because it is heavily imbalanced, with thousands of
images in some categories and less than a hundred examples in others. This reflects
how datasets are found in real life. Accuracy—i.e., the percentage of correctly classi‐
fied images—is not a good metric for an imbalanced dataset. So, precision, recall, and
F1 score will be used instead. As you learned in Chapter 2, the precision score for the
category “daisy” is the fraction of daisy predictions that are correct, while the recall
score is the fraction of daisies in the dataset that are correctly classified. The F1 score
is the harmonic mean of the two. The overall precision is the weighted average of the
precision of all the categories, weighted by the number of instances in each category.
More information about these metrics can be found in Chapter 8.

The GitHub repository contains three notebooks experimenting with these fine-
tuning techniques on the larger 104 flowers dataset. The results are presented in
Table 3-1. For this task we used Xception, a model with more weights and layers than
MobileNet, because the 104 flowers dataset is larger and can support this larger
model. As you can see, a learning rate ramp-up or a per-layer differential learning
rate is not strictly necessary, but in practice it makes the convergence more stable and
makes it easier to find working learning rate parameters.

66 | Chapter 3: Image Vision

Table 3-1. Summary of results obtained by a larger model (Xception) fine-tuned on the larger
104 flowers dataset

Notebook name LR ramp-
up

Differential LR Mean F1 score
across five
runs

Standard
deviation across
five runs

Notes

lr_decay_xception No No 0.932 0.004 Good, relatively low
variance

lr_ramp_xception Yes No 0.934 0.007 Very good, high
variance

lr_layers_lr_ramp_xception Yes Yes 0.936 0.003 Best, nice low variance

So far, we have used MobileNet and Xception for transfer learning and fine-tuning,
but these models are black boxes as far as we are concerned. We do not know how
many layers they have, or what those layers consist of. In the next section, we will dis‐
cuss a key concept, convolution, that helps these neural networks work well at extract‐
ing the semantic information content of an image.

Convolutional Networks
Convolutional layers were designed specifically for images. They operate in two
dimensions and can capture shape information; they work by sliding a small window,
called a convolutional filter, across the image in both directions.

Convolutional Filters
A typical 4x4 filter will have independent filter weights for each of the channels of the
image. For color images with red, green, and blue channels, the filter will have 4 * 4 *
3 = 48 learnable weights in total. The filter is applied to a single position in the image
by multiplying the pixel values in the neighborhood of that position by filter weights
and summing them as shown in Figure 3-9. This operation is called the tensor dot
product. Computing the dot product at each position in the image by sliding the filter
across the image is called a convolution.

Convolutional Networks | 67

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03b_finetune_experiment_lr_decay_xception_flowers104.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03b_finetune_experiment_lr_ramp_xception_flowers104.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03b_finetune_experiment_lr_layers_lr_ramp_xception_flowers104.ipynb

Figure 3-9. Processing an image with a single 4x4 convolutional filter—the filter slides
across the image in both directions, producing one output value at each position.

Why Do Convolutional Filters Work?
Convolutional filters have been used in image processing for a long time. They can
achieve many different effects. For example, a filter where all the weights are the same
is a “smoothing” filter (because each pixel within a window has an equal contribution
for the resulting output pixel) and yields the second panel shown in Figure 3-10.
Organizing the weights in other specific ways can create edge and intensity detectors
(for details, see 03_image_models/diagrams.ipynb in the GitHub repository).

Figure 3-10. The effects of different convolutional filters.

68 | Chapter 3: Image Vision

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/diagrams.ipynb

The more interesting filters, like the edge filter in Figure 3-10 (panel 3), use correla‐
tions and anti-correlations of adjacent pixels to compute new information about the
image. Indeed, adjacent pixels tend to be highly correlated and work together to cre‐
ate what we call textures and edges at small scales and shapes at higher scales. That is
where the information of the image is encoded, and that is also what convolutional
filters are well equipped to detect.

A convolutional neural network filter, therefore, makes it possible for the machine
learning model to learn the arrangement of weights that best picks up pertinent
details from the training data. The network will learn whatever combination of
weights will minimize the loss.

Another advantage of convolutional filters is that a 5x5x3 filter has only 75 weights,
and the same weights are slid across the entire image. Contrast this with a fully con‐
nected network layer, where an image that is 200x200x3 will end up with 120K
weights per node in the next layer! Convolutional filters can therefore help limit the
complexity of the neural network. Since the size of the dataset we require for training
is related to the number of trainable parameters, using convolutional filters allows us
to use our training data more effectively.

A single convolutional filter can process an entire image with very few learnable
parameters—so few, in fact, that it will not be able to learn and represent enough of
the complexities of the image. Multiple such filters are needed. A convolutional layer
typically contains tens or hundreds of similar filters, each with its own independent
learnable weights (see Figure 3-11). They are applied to the image in succession, and
each produces a channel of output values. The output of a convolutional layer is a
multichannel set of 2D values. Notice that this output has the same number of
dimensions as the input image, which was already a three-channel set of 2D pixel
values.

Understanding the structure of a convolutional layer makes it easy to compute its
number of learnable weights, as you can see in Figure 3-12. This diagram also intro‐
duces the schematic notation of convolutional layers that will be used for the models
in this chapter.

Convolutional Networks | 69

Figure 3-11. Processing an image with a convolutional layer made up of multiple convo‐
lutional filters—all filters are of the same size (here, 4x4x3) but have independent learn‐
able weights.

Figure 3-12. W, the weights matrix of a convolutional layer.

70 | Chapter 3: Image Vision

In this case, with 5 filters applied, the total number of learnable weights in this convo‐
lutional layer is 4 * 4 * 3 * 5 = 240.

Convolutional layers are available in Keras:

tf.keras.layers.Conv2D(filters,
 kernel_size,
 strides=(1, 1),
 padding='valid',
 activation=None)

The following is a simplified description of the parameters (see the Keras documenta‐
tion for full details):

filters

The number of independent filters to apply to the input. This will also be the
number of output channels in the output.

kernel_size

The size of each filter. This can be a single number, like 4 for a 4x4 filter, or a pair
like (4, 2) for a rectangular 4x2 filter.

strides

The filter slides across the input image in steps. The default step size is 1 pixel in
both directions. Using a larger step will skip input pixels and produce fewer out‐
put values.

padding

'valid' for no padding or 'same' for zero-padding at the edges. If filters are
applied to inputs with 'valid' padding, convolution is carried out only if all the
pixels within the window are valid, so boundary pixels get ignored. Therefore,
the output will be slightly smaller in the x and y directions. The value 'same'
enables zero-padding of the input to make sure that outputs have the same width
and height as the input.

activation

Like any neural network layer, a convolutional layer can be followed by an activa‐
tion (nonlinearity).

The convolutional layer illustrated in Figure 3-11, with five 4x4 filters, input padding,
and the default stride of 1 in both directions, can be implemented as follows:

tf.keras.layers.Conv2D(filters=5, kernel_size=4, padding='same')

4D tensors are expected as inputs and outputs of convolutional layers. The first
dimension is the batch size, so the full shape is [batch, height, width, channels]. For
example, a batch of 16 color (RGB) images of 512x512 pixels would be represented as
a tensor with dimensions [16, 512, 512, 3].

Convolutional Networks | 71

https://oreil.ly/NLRBL
https://oreil.ly/NLRBL

Stacking Convolutional Layers
As described in the previous section, a generic convolutional layer takes a 4D tensor
of shape [batch, height, width, channels] as an input and produces another 4D tensor
as an output. For simplicity, we will ignore the batch dimension in our diagrams and
show what happens to a single 3D image of shape [height, width, channels].

A convolutional layer transforms a “cube” of data into another “cube” of data, which
can in turn be consumed by another convolutional layer. Convolutional layers can be
stacked as shown in Figure 3-13.

Figure 3-13. Data transformed by two convolutional layers applied in sequence.
Learnable weights are shown on the right. The second convolutional layer is applied with
a stride of 2 and has six input channels, matching the six output channels of the previous
layer.

Figure 3-13 shows how the data is transformed by two convolutional layers. Starting
from the top, the first layer is a 3x3 filter applied to an input with four channels of
data. The filter is applied to the input six times, each time with different filter weights,
resulting in six channels of output values. This in turn is fed into a second

72 | Chapter 3: Image Vision

convolutional layer using 2x2 filters. Notice that the second convolutional layer uses a
stride of 2 (every other pixel) when applying its filters to obtain fewer output values
(in the horizontal plane).

Pooling Layers
The number of filters applied in each convolutional layer determines the number of
channels in the output. But how can we control the amount of data in each channel?
The goal of a neural network is usually to distill information from the input image,
consisting of millions of pixels, to a handful of classes. So, we will need layers that can
combine or downsample the information in each channel.

The most commonly used downsampling operation is 2x2 max pooling. With max
pooling, only the maximum value is retained for each group of four input values from
a channel (Figure 3-14). Average pooling works in a similar way, averaging the four
values instead of keeping the max.

Figure 3-14. A 2x2 max-pooling operation applied to a single channel of input data. The
max is taken for every group of 2x2 input values and the operation is repeated every two
values in each direction (stride 2).

Note that max-pooling and average-pooling layers do not have any trainable weights.
They are purely size adjustment layers.

There is an interesting physical explanation of why max-pooling layers work well
with convolutional layers in neural networks. Convolutional layers are series of

Convolutional Networks | 73

trainable filters. After training, each filter specializes in matching some specific image
feature. The first layer in a convolutional neural network reacts to pixel combinations
in the input image, but subsequent layers react to combinations of features from the
previous layers. For example, in a neural network trained to recognize cats, the first
layer reacts to basic image components like horizontal and vertical lines or the texture
of fur. Subsequent layers react to specific combinations of lines and fur to recognize
pointy ears, whiskers, or cat eyes. Even later layers detect a combination of pointy
ears + whiskers + cat eyes as a cat head. A max-pooling layer only keeps values where
some feature X was detected with maximum intensity. If the goal is to reduce the
number of values but keep the ones most representative of what was detected, it
makes sense.

Pooling layers and convolutional layers also have different effects on the locations of
detected features. A convolutional layer returns a feature map with its high values
located where its filters detected something significant. Pooling layers, on the other
hand, reduce the resolution of the feature maps and make the location information
less accurate. Sometimes location or relative location is important, such as eyes usu‐
ally being located above the nose in a face. Convolutions do produce location infor‐
mation for other layers further along in the network to work with. At other times,
however, locating a feature is not the goal—for instance, in a flower classifier, where
you want to train the model to recognize flowers in an image wherever they are. In
such a case, when training for location invariance, pooling layers help blur the loca‐
tion information to some extent, but not completely. The network will have to be
trained on images showing flowers in many different locations if it is to become truly
location-agnostic. Data augmentation methods like random crops of the image can be
used to force the network to learn this location invariance. Data augmentation is cov‐
ered in Chapter 6.

A second option for downsampling channel information is to apply convolutions
with a stride of 2 or 3 instead of 1. The convolutional filters then slide over the input
image by steps of 2 or 3 pixels in each direction. This mechanically produces a certain
size of output values, as shown in Figure 3-15.

74 | Chapter 3: Image Vision

Figure 3-15. A 3x3 filter applied to a single channel of data with a stride of 2 in both
directions and without padding. The filter jumps by 2 pixels at a time.

We are now ready to assemble these layers into our first convolutional neural
classifier.

AlexNet
The simplest convolutional neural network architecture is a mix of convolutional lay‐
ers and max-pooling layers. It transforms each input image into a final rectangular
prism of values, usually called a feature map, which is then fed into a number of fully
connected layers and, finally, a softmax layer to compute class probabilities.

AlexNet, introduced in a 2012 paper by Alex Krizhevsky et al. and shown in
Figure 3-16, is such an architecture. It was designed for the ImageNet competition,
which asked participants to classify images into one thousand categories (car, flower,
dog, etc.) based on a training dataset of more than a million images. AlexNet was one
of the earliest successes in neural image classification, exhibiting a dramatic improve‐
ment in accuracy and proving that deep learning was much better able to address
computer vision problems than existing techniques.

Convolutional Networks | 75

https://oreil.ly/sMlqQ
https://oreil.ly/G1jfu

Figure 3-16. The AlexNet architecture: neural network layers are represented on the left.
Feature maps (as transformed by the layers) on the right.

In this architecture, convolutional layers change the depth of the data—i.e., the num‐
ber of channels. Max-pooling layers downsample the data in the height and width
directions. The first convolutional layer has a stride of 4, which is why it downsam‐
ples the image as well.

AlexNet uses 3x3 max-pooling operations with a stride of 2. A more traditional
choice would be 2x2 max pooling with a stride of 2. The AlexNet study claims some
advantage for this “overlapping” max pooling, but it does not appear to be significant.

Every convolutional layer is activated by a ReLU activation function. The final four
layers form the classification head of AlexNet, taking the last feature map, flattening

76 | Chapter 3: Image Vision

all of its values into a vector, and feeding it through three fully connected layers.
Because AlexNet was designed for a thousand categories, the last layer is activated by
a softmax with one thousand outputs that computes the probabilities of the thousand
target classes.

All convolutional and fully connected layers use an additive bias. When the ReLU
activation function is used, it is customary to initialize the bias to a small positive
value before training so that, after activation, all layers start with a nonzero output
and a nonzero gradient (remember that the ReLU curve is a flat zero for all negative
values).

In Figure 3-16, notice that AlexNet starts with a very large 11x11 convolutional filter.
This is costly in terms of learnable weights and probably not something that would be
done in more modern architectures. However, one advantage of the large 11x11 fil‐
ters is that their learned weights can be visualized as 11x11-pixel images. The authors
of the AlexNet paper did so; their results are shown in Figure 3-17.

Figure 3-17. All 96 filters from the first AlexNet layer. Their size is 11x11x3, which
means they can be visualized as color images. This picture shows their weights after
training. Image from Krizhevsky et al., 2012.

As you can see, the network learned to detect vertical, horizontal and slanted lines of
various orientations. Two filters exhibit a checkerboard pattern, which probably
reacts to grainy textures in the image. You can also see detectors for single colors or
pairs of adjacent colors. All these are basic features that subsequent convolutional lay‐
ers will assemble into semantically more significant constructs. For example, the neu‐
ral network will combine textures and lines into shapes like “wheels,” “handlebars,”
and “saddle,” and then combine these shapes into a “bicycle.”

We chose to present AlexNet here because it was one of the pioneering convolutional
architectures. Alternating convolutional and max-pooling layers is still a feature of
modern networks. Other choices made in this architecture, however, no longer repre‐
sent currently recognized best practice. For example, the use of a very large 11x11 fil‐
ter in the first convolutional layer has since been found to not be the best use of
learnable weights (3x3 is better, as we’ll see later in this chapter). Also, the three final
fully connected layers have more than 26 million learnable weights! This is an order

Convolutional Networks | 77

https://oreil.ly/X3xRb

of magnitude more than all the convolutional layers combined (3.7 million). The net‐
work is also very shallow, with only eight neural layers. Modern neural networks
increase that dramatically, to one hundred layers or more.

One advantage of this very simple model, however, is that it can be implemented
quite concisely in Keras (you can see the full example in 03c_fromzero_ALEX‐
NET_flowers104.ipynb on GitHub):

model = tf.keras.Sequential([
 tf.keras.Input(shape=[IMG_HEIGHT, IMG_WIDTH, 3]),
 tf.keras.layers.Conv2D(filters=96, kernel_size=11, strides=4,
 activation='relu'),
 tf.keras.layers.Conv2D(filters=256, kernel_size=5,
 activation='relu'),
 tf.keras.layers.MaxPool2D(pool_size=2, strides=2),
 tf.keras.layers.Conv2D(filters=384, kernel_size=3,
 activation='relu'),
 tf.keras.layers.MaxPool2D(pool_size=2, strides=2),
 tf.keras.layers.Conv2D(filters=384, kernel_size=3,
 activation='relu'),
 tf.keras.layers.Conv2D(filters=256, kernel_size=3,
 activation='relu'),
 tf.keras.layers.MaxPool2D(pool_size=2, strides=2),
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(4096, activation='relu'),
 tf.keras.layers.Dense(4096, activation='relu'),
 tf.keras.layers.Dense(len(CLASSES), activation='softmax')
])

This model converges on the 104 flowers dataset to an accuracy of 39%, which, while
not useful for practical flower recognition, is surprisingly good for such a simple
architecture.

AlexNet at a Glance
Architecture

Alternates convolutional and max-pooling layers

Publication
Alex Krizhevsky et al.,“ImageNet Classification with Deep Convolutional Neural
Networks,” NIPS 2012, https://oreil.ly/X3xRb.

Code sample
03c_fromzero_ALEXNET_flowers104.ipynb

78 | Chapter 3: Image Vision

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03c_fromzero_ALEXNET_flowers104.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03c_fromzero_ALEXNET_flowers104.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03c_fromzero_ALEXNET_flowers104.ipynb

Table 3-2. AlexNet at a glance

Model Parameters (excl.
classification heada)

ImageNet accuracy 104 flowers F1 scoreb

(trained from scratch)
AlexNet 3.7M 60% 39% precision: 44%,

recall: 38%
a Excluding classification head from parameter counts for easier comparisons between architectures.
Without the classification head, the number of parameters in the network is resolution-independent. Also,
in fine-tuning examples, a different classification head might be used.
b For accuracy, precision, recall, and F1 score values, higher is better.

In the remainder of this chapter, we provide intuitive explanations of different net‐
work architectures as well as the concepts and building blocks they introduced.
Although we showed you the implementation of AlexNet in Keras, you would not
typically implement the architectures that we discussed by yourself. Instead, these
models are often available directly in Keras as pretrained models ready for transfer
learning or fine-tuning. For example, this is how you can instantiate a pretrained
ResNet50 model (for more information, see “Pretrained Models in Keras” on page
59):

tf.keras.applications.ResNet50(weights='imagenet')

If a model is not yet available in keras.applications, it can usually be found in
TensorFlow Hub. For example, this is how you instantiate the same ResNet50 model
from TensorFlow Hub:

hub.KerasLayer(
 "https://tfhub.dev/tensorflow/resnet_50/classification/1")

So, feel free to skim the rest of this chapter to get an idea of the basic concepts, and
then read the final section on how to choose a model architecture for your problem.
You don’t need to understand all the nuances of the network architectures in this
chapter to make sense of the remainder of this book, because it is rare that you will
have to implement any of these architectures from scratch or design your own net‐
work architecture. Mostly, you will pick one of the architectures we suggest in the
final section of this chapter. It is, however, interesting to understand how these archi‐
tectures are constructed. Understanding the architectures will also help you pick the
correct parameters when you instantiate them.

Convolutional Networks | 79

The Quest for Depth
After AlexNet, researchers started increasing the depths of their convolutional net‐
works. They found that adding more layers resulted in better classification accuracy.
Several explanations have been offered for this:

The expressivity argument
A single layer is a linear function. It cannot approximate complex nonlinear
functions, whatever its number of parameters. Each layer is, however, activated
with a nonlinear activation function such as sigmoid or ReLU. Stacking multiple
layers results in multiple successive nonlinearities and a better chance of being
able to approximate the desired highly complex functionality, such as differenti‐
ating between images of cats and dogs.

The generalization argument
Adding parameters to a single layer increases the “memory” of the neural net‐
work and allows it to learn more complex things. However, it will tend to learn
them by memorizing input examples. This does not generalize well. On the other
hand, stacking many layers forces the network to break down its input semanti‐
cally into a hierarchical structure of features. For example, initial layers will rec‐
ognize fur and whiskers, and later layers will assemble them to recognize a cat
head, then an entire cat. The resulting classifier generalizes better.

The perceptive field argument
If a cat’s head covers a significant portion of an image—say, a 128x128-pixel
region—a single-layer convolutional network would need 128x128 filters to be
able to capture it, which would be prohibitively expensive in term of learnable
weights. Stacked layers, on the other hand, can use small 3x3 or 5x5 filters and
still be able to “see” any 128x128-pixel region if they are sufficiently deep in the
convolutional stack.

In order to design deeper convolutional networks without growing the parameter
count uncontrollably, researchers also started designing cheaper convolutional layers.
Let’s see how.

Filter Factorization
Which one is better: a 5x5 convolutional filter or two 3x3 filters applied in sequence?
Both have a receptive area of 5x5 (see Figure 3-18). Although they do not perform the
exact same mathematical operation, their effect is likely to be similar. The difference
is that two 3x3 filters applied in sequence have a total of 2 * 3 * 3 = 18 learnable
parameters, whereas a single 5x5 filter has 5 * 5 = 25 learnable weights. So, two 3x3
filters are cheaper.

80 | Chapter 3: Image Vision

Figure 3-18. Two 3x3 filters applied in sequence. Each output value is computed from a
5x5 receptive field, which is similar to how a 5x5 filter works.

Another advantage is that a pair of 3x3 convolutional layers will involve two applica‐
tions of the activation function, since each convolutional layer is followed by an acti‐
vation. A single 5x5 layer has a single activation. The activation function is the only
nonlinear part of a neural network and it is probable that the composition of nonli‐
nearities in sequence will be able to express more complex nonlinear representations
of the inputs.

In practice, it has been found that two 3x3 layers work better than one 5x5 layer while
using fewer learnable weights. That’s why you will see 3x3 convolutional layers used
extensively in modern convolutional architectures. This is sometimes referred to as
filter factorization, although it is not exactly a factorization in the mathematical sense.

The other filter size that is popular today is 1x1 convolutions. Let’s see why.

The Quest for Depth | 81

1x1 Convolutions
Sliding a single-pixel filter across an image sounds silly. It’s multiplying the image by
a constant. However, on multichannel inputs, with a different weight for each chan‐
nel, it actually makes sense. For example, multiplying the three color channels of an
RGB image by three learnable weights and then adding them up produces a linear
combination of the color channels that can actually be useful. A 1x1 convolutional
layer performs multiple linear combinations of this kind, each time with an inde‐
pendent set of weights, producing multiple output channels (Figure 3-19).

Figure 3-19. A 1x1 convolutional layer. Each filter has 10 parameters because it acts on
a 10-channel input. 5 such filters are applied, each with its own learnable parameters
(not shown in the figure), resulting in 5 channels of output data.

A 1x1 convolutional layer is a useful tool for adjusting the number of channels of the
data. The second advantage is that 1x1 convolutional layers are cheap, in terms of
number of learnable parameters, compared to 2x2, 3x3, or larger layers. The tensor of

82 | Chapter 3: Image Vision

weights representing the 1x1 convolutional layer in the previous illustration is shown
in Figure 3-20.

Figure 3-20. The weights matrix of the 1x1 convolutional layer from Figure 3-19.

The number of learnable weights is 1 * 1 * 10 * 5 = 50. A 3x3 layer with the same
number of input and output channels would require 3 * 3 * 10 * 5 = 450 weights, an
order of magnitude more!

Next, let’s look at an architecture that employs these tricks.

VGG19
VGG19, introduced in a 2014 paper by Karen Simonyan and Andrew Zisserman, was
one of the first architectures to use 3x3 convolutions exclusively. Figure 3-21 shows
what it looks like with 19 layers.

All the neural network layers in this figure use biases and are ReLU-activated, apart
from the last layer which uses softmax activation.

VGG19 improves on AlexNet by being much deeper. It has 16 convolutional layers
instead of 5. It also uses 3x3 convolutions exclusively without losing accuracy. How‐
ever, it uses the exact same classification head as AlexNet, with three large fully con‐
nected layers accounting for over 120 million weights, while it has only 20 million
weights in the convolutional layers. There are cheaper alternatives.

The Quest for Depth | 83

https://arxiv.org/abs/1409.1556

Figure 3-21. The VGG19 architecture with 19 learnable layers (left). The data shapes are
shown on the right (not all represented). Notice that all convolutional layers use 3x3
filters.

84 | Chapter 3: Image Vision

VGG19 at a Glance
Architecture

Alternates convolutional and max-pooling layers using 3x3 convolutions only

Publication
Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” 2014, https://arxiv.org/abs/1409.1556v6.

Code sample
03d_finetune_VGG19_flowers104.ipynb

Table 3-3. VGG19 at a glance

Model Parameters (excl.
classif. heada)

ImageNet
accuracy

104 flowers F1
scoreb (fine-
tuning)

104 flowers F1
score (trained
from scratch)

VGG19 20M 71% 88% precision:
89%, recall: 88%

N/Ac

Previous best for comparison:
AlexNet 3.7M 60% 39% precision:

44%, recall: 38%
a Excluding classification head from parameter counts for easier comparisons between architectures.
Without the classification head, the number of parameters in the network is resolution-independent. Also,
in fine-tuning examples, a different classification head might be used.
b For accuracy, precision, recall, and F1 score values, higher is better.
c We did not bother training VGG16 from scratch on the 104 flowers dataset because the result would be
much worse than fine-tuning.

Global Average Pooling
Let’s look again at the implementation of the classification head. In both the AlexNet
and VGG19 architectures, the feature map output by the last convolutional layer is
turned into a vector (flattened) and then fed into one or more fully connected layers
(see Figure 3-22). The goal is to end on a softmax-activated fully connected layer with
exactly as many neurons as classes in the classification problem at hand—for exam‐
ple, one thousand classes for the ImageNet dataset or five classes for the 5-flowers
dataset used in the previous chapter. This fully connected layer has input * outputs
weights, which tends to be a lot.

The Quest for Depth | 85

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03d_finetune_VGG19_flowers104.ipynb

Figure 3-22. A traditional classification head at the end of a convolutional network. The
data coming out of convolutional layers is flattened and fed into a fully connected layer.
Softmax activation is used to obtain class probabilities.

If the only goal is to obtain N values to feed an N-way softmax function, there is an
easy way to achieve that: adjust the convolutional stack so that it ends on a final fea‐
ture map with exactly N channels and simply average the values in each channel, as
shown in Figure 3-23. This is known as global average pooling. Global average pooling
involves no learnable weights, so from this perspective it’s cheap.

Global average pooling can be followed by a softmax activation directly (as in
SqueezeNet, shown in Figure 3-26), although in most architectures described in this
book it will be followed by a single softmax-activated fully connected layer (for exam‐
ple in a ResNet, as shown in Figure 3-29).

86 | Chapter 3: Image Vision

Figure 3-23. Global average pooling. Each channel is averaged into a single value. Global
average pooling followed by a softmax function implements a classification head with
zero learnable parameters.

Averaging removes a lot of the positional information present in
the channels. That might or might not be a good thing depending
on the application. Convolutional filters detect the things they have
been trained to detect in a specific location. If the network is classi‐
fying, for example, cats versus dogs, the location data (e.g., “cat’s
whiskers” detected at position x, y in the channel) is probably not
useful in the classification head. The only thing of interest is the
“dog detected anywhere” signal versus the “cat detected anywhere”
signal. For other applications, though, a global average-pooling
layer might not be the best choice. For example, in object detection
or object counting use cases, the location of detected objects is
important and global average pooling should not be used.

Modular Architectures
A straight succession of convolutional and pooling layers is enough to build a basic
convolutional neural network. However, to further increase prediction accuracy,
researchers designed more complex building blocks, or modules, often given arcane
names such as “Inception modules,” “residual blocks,” or “inverted residual bottle‐
necks,” and then assembled them into complete convolutional architectures. Having
higher-level building blocks also made it easier to create automated algorithms to
search for better architectures, as we will see in the section on neural architecture

Modular Architectures | 87

search. In this section we’ll explore several of these modular architectures and the
research behind each of them.

Inception
The Inception architecture was named after Christopher Nolan’s 2010 movie Incep‐
tion, starring Leonardo DiCaprio. One line from the movie dialog—“We need to go
deeper”—became an internet meme. Building deeper and deeper neural networks
was one of the main motivations of researchers at that time.

The Inception V3 architecture uses 3x3 and 1x1 convolutional filters exclusively, as is
now customary in most convolutional architectures. It tries to address another prob‐
lem, though, with a very original approach. When lining up the convolutional and
pooling layers in a neural network, the designer has multiple choices, and the best
one is not obvious. Instead of relying on guesswork and experimentation, why not
build multiple options into the network itself and let it learn which one is the best?
This is the motivation behind Inception’s “modules” (see Figure 3-24).

Figure 3-24. Example of an Inception module. The entire InceptionV3 architecture (on
the right) is made up of many such modules.

Instead of deciding beforehand which sequence of layers is the most appropriate, an
Inception module provides several alternatives that the network can choose from,

88 | Chapter 3: Image Vision

https://oreil.ly/uSwgP
https://oreil.ly/uSwgP
https://arxiv.org/abs/1512.00567v3

based on data and training. As shown in Figure 3-24, the outputs of the different
paths are concatenated into the final feature map.

We will not detail the full InceptionV3 architecture in this book because it is rather
complex and has since been superseded by newer and simpler alternatives. A simpli‐
fied variant, also based on the “module” idea, is presented next.

InceptionV3 at a Glance
Architecture

Sequence of multipath convolutional modules.

Publication
Christian Szegedy et al., “Rethinking the Inception Architecture for Computer
Vision,” 2015, https://arxiv.org/abs/1512.00567v3.

Code sample
03e_finetune_INCEPTIONV3_flowers104.ipynb

Table 3-4. InceptionV3 at a glance

Model Parameters (excl.
classification heada)

ImageNet accuracy 104 flowers F1 scoreb

(fine-tuning)
InceptionV3 22M 78% 95% precision: 95%,

recall: 94%
Previous best for comparison:
VGG19 20M 71% 88% precision: 89%,

recall: 88%
a Excluding classification head from parameter counts for easier comparisons between architectures.
Without the classification head, the number of parameters in the network is resolution-independent. Also,
in fine-tuning examples, a different classification head might be used.
b For accuracy, precision, recall, and F1 score values, higher is better.

SqueezeNet
The idea of modules was simplified by the SqueezeNet architecture, which kept the
basic principle of offering multiple paths for the network to choose from but stream‐
lined the modules themselves into their simplest expression (Figure 3-25). The
SqueezeNet paper calls them “fire modules.”

Modular Architectures | 89

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03e_finetune_INCEPTIONV3_flowers104.ipynb
https://arxiv.org/abs/1602.07360

Figure 3-25. A simplified and standardized convolutional module from the SqueezeNet
architecture. The architecture, shown on the right, alternates these “fire modules” with
max-pooling layers.

The modules used in the SqueezeNet architecture alternate a contraction stage, where
the number of channels is reduced by a 1x1 convolution, with an expansion stage
where the number of channels is increased again.

To save on weight count, SqueezeNet uses global average pooling for the last layer.
Also, two out of the three convolutional layers in each module are 1x1 convolutions,
which saves on learnable weights (see Figure 3-26).

90 | Chapter 3: Image Vision

Figure 3-26. The SqueezeNet architecture with 18 convolutional layers. Each “fire mod‐
ule” contains a “squeeze” layer followed by two parallel “expand” layers. The network
pictured here contains 1.2M learnable parameters.

In Figure 3-26, “maxpool” is a standard 2x2 max-pooling operation with a stride of 2.
Also, every convolutional layer in the architecture is ReLU-activated and uses batch
normalization. The thousand-class classification head is implemented by first stretch‐
ing the number of channels to one thousand with a 1x1 convolution, then averaging
the thousand channels (global average pooling) and finally applying softmax
activation.

The SqueezeNet architecture aims to be simple and economical (in terms of learnable
weights) but still incorporate most of the latest best practices in building convolu‐
tional neural networks. Its simplicity makes it a good choice when you want to imple‐
ment your own convolutional backbone, either for education purposes or because
you need to tweak it for your needs. The one architectural element that might not be
considered best practice today is the large 7x7 initial convolutional layer, inspired
directly by AlexNet.

In order to implement the SqueezeNet model in Keras, we have to use a Keras Func‐
tional API model. We can no longer use a Sequential model, because SqueezeNet is
not a straight sequence of layers. We first create a helper function that instantiates a

Modular Architectures | 91

fire module (the full code is available in 03f_fromzero_SQUEEZENET24_flow‐
ers104.ipynb on GitHub):

def fire(x, squeeze, expand):
 y = tf.keras.layers.Conv2D(filters=squeeze, kernel_size=1,
 activation='relu', padding='same')(x)
 y = tf.keras.layers.BatchNormalization()(y)
 y1 = tf.keras.layers.Conv2D(filters=expand//2, kernel_size=1,
 activation='relu', padding='same')(y)
 y1 = tf.keras.layers.BatchNormalization()(y1)
 y3 = tf.keras.layers.Conv2D(filters=expand//2, kernel_size=3,
 activation='relu', padding='same')(y)
 y3 = tf.keras.layers.BatchNormalization()(y3)
 return tf.keras.layers.concatenate([y1, y3])

As you can see in the first line of the function, using the Keras Functional API,
tf.keras.layers.Conv2D() instantiates a convolutional layer which is then called
with the input x. We can slightly transform the fire() function so that it uses the
same semantics:

def fire_module(squeeze, expand):
 return lambda x: fire(x, squeeze, expand)

And here is the implementation of a custom 24-layer SqueezeNet. It performed rea‐
sonably well on the 104 flowers dataset, with an F1 score of 76%, which isn’t bad con‐
sidering it was trained from scratch:

x = tf.keras.layers.Input(shape=[IMG_HEIGHT, IMG_WIDTH, 3])
y = tf.keras.layers.Conv2D(kernel_size=3, filters=32,
 padding='same', activation='relu')(x)
y = tf.keras.layers.BatchNormalization()(y)
y = fire_module(16, 32)(y)
y = tf.keras.layers.MaxPooling2D(pool_size=2)(y)
y = fire_module(48, 96)(y)
y = tf.keras.layers.MaxPooling2D(pool_size=2)(y)
y = fire_module(64, 128)(y)
y = fire_module(80, 160)(y)
y = fire_module(96, 192)(y)
y = tf.keras.layers.MaxPooling2D(pool_size=2)(y)
y = fire_module(112, 224)(y)
y = fire_module(128, 256)(y)
y = fire_module(160, 320)(y)
y = tf.keras.layers.MaxPooling2D(pool_size=2)(y)
y = fire_module(192, 384)(y)
y = fire_module(224, 448)(y)
y = tf.keras.layers.MaxPooling2D(pool_size=2)(y)
y = fire_module(256, 512)(y)
y = tf.keras.layers.GlobalAveragePooling2D()(y)
y = tf.keras.layers.Dense(len(CLASSES), activation='softmax')(y)

model = tf.keras.Model(x, y)

92 | Chapter 3: Image Vision

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03f_fromzero_SQUEEZENET24_flowers104.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03f_fromzero_SQUEEZENET24_flowers104.ipynb

In the last line, we create the model by passing in the initial input layer and the final
output. The model can be used just like a Sequential model, so the rest of the code
remains the same.

SqueezeNet at a Glance
Architecture

Simplified convolutional modules built from parallel 3x3 and 1x1 convolutions

Publication
Forrest Iandola et al., “SqueezeNet: AlexNet-Level Accuracy with 50x Fewer
Parameters,” 2016, https://arxiv.org/abs/1602.07360.

Code sample
03f_fromzero_SQUEEZENET24_flowers104.ipynb

Table 3-5. SqueezeNet at a glance

Model Parameters (excl.
classification heada)

ImageNet accuracy 104 flowers F1 scoreb

(trained from scratch)
SqueezeNet, 24 layers 2.7M 76% precision: 77%,

recall: 75%
SqueezeNet, 18 layers 1.2M 56%
Previous best for comparison:
AlexNet 3.7M 60% 39% prec.: 44%, recall:

38%
a Excluding classification head from parameter counts for easier comparisons between architectures.
Without the classification head, the number of parameters in the network is resolution-independent. Also,
in fine-tuning examples, a different classification head might be used.
b For accuracy, precision, recall, and F1 score values, higher is better.

ResNet and Skip Connections
The ResNet architecture, introduced in a 2015 paper by Kaiming He et al., continued
the trend of increasing the depth of neural networks but addressed a common chal‐
lenge with very deep neural networks—they tend to converge badly because of van‐
ishing or exploding gradient problems. During training, a neural network sees what
error (or loss) it is making and tries to minimize this error by adjusting its internal
weights. It is guided in this by the first derivative (or gradient) of the error. Unfortu‐
nately, with many layers, the gradients tend to be spread too thin across all layers and
the network converges slowly or not at all.

Modular Architectures | 93

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03f_fromzero_SQUEEZENET24_flowers104.ipynb
https://arxiv.org/abs/1512.03385

ResNet tried to remedy this by adding skip connections alongside its convolutional
layers (Figure 3-27). Skip connections convey the signal as is, then recombine it with
the data that has been transformed by one or more convolutional layers. The combin‐
ing operation is a simple element-by-element addition.

Figure 3-27. A residual block in ResNet.

As can be seen in Figure 3-27, the output of the block f(x) is the sum of the output of
the convolutional path C(x) and the skip connection (x). The convolutional path is
trained to compute C(x) = f(x) – x, the difference between the desired output and the
input. The authors of the ResNet paper argue that this “residue” is easier for the net‐
work to learn.

An obvious limitation is that the element-wise addition can only work if the dimen‐
sions of the data remain unchanged. The sequence of layers that is straddled by a skip
connection (called a residual block) must preserve the height, the width, and the num‐
ber of channels of the data.

When size adjustments are needed, a different kind of residual block is used
(Figure 3-28). Different numbers of channels can be matched in the skip connection
by using a 1x1 convolution instead of an identity. Height and width adjustments are
obtained by using a stride of 2 both in the convolutional path and in the skip connec‐
tion (yes, implementing the skip connection with a 1x1 convolution of stride 2
ignores half of the values in the input, but this does not seem to matter in practice).

94 | Chapter 3: Image Vision

Figure 3-28. A residual block with height, width, and channel number adjustments. The
number of channels is changed in the skip connection by using a 1x1 convolution instead
of an identity function. Data height and width are downsampled by using one convolu‐
tional layer with a stride of 2 in both the convolutional path and the skip connection.

The ResNet architecture can be instantiated with various depths by stacking more
and more residual blocks. Popular sizes are ResNet50 and ResNet101 (Figure 3-29).

Modular Architectures | 95

Figure 3-29. The ResNet50 architecture. Residual blocks with a stride of 2 have a skip
connection implemented using a 1x1 convolution (dotted line). The ResNet 101 architec‐
ture is similar, with the “residual 256, 1,024” block repeated 23 times instead of 6.

In Figure 3-29, all the convolutional layers are ReLU-activated and use batch normal‐
ization. A network with this architecture can grow very deep—as the names indicate,
50, 100, or more layers are common for ResNets—but it is still able to figure out
which layers need to have their weights adjusted for any given output error.

Skip connections seem to help gradients flow through the network during the optimi‐
zation (backpropagation) phase. Several explanations have been suggested for this.
Here are the three most popular ones.

96 | Chapter 3: Image Vision

The ResNet paper’s authors theorize that the addition operation (see Figure 3-27)
plays an important role. In a regular neural network, internal weights are adjusted to
produce a desired output, such as a classification into one thousand classes. With skip
connections, however, the goal of the neural network layers is to output the delta (or
“residue”) between the input and the desired final output. This, the authors argue, is
an “easier” task for the network, but they don’t elaborate on what makes it easier.

A second interesting explanation is that residual connections actually make the net‐
work shallower. During the gradient backpropagation phase, gradients flow both
through convolutional layers, where they might decrease in magnitude, and through
the skip connections, which leave them unchanged. In the paper “Residual Networks
Behave Like Ensembles of Relatively Shallow Networks,” Veit et al. measured the
intensity of gradients in a ResNet architecture. The result (Figure 3-30) shows how, in
a 50-layer ResNet neural network, the signal can flow through various combinations
of convolutional layers and skip connections.

Figure 3-30. Theoretical distribution of path length in a ResNet50 model versus the path
actually taken by meaningful gradients during backpropagation. Image from Veit et al.,
2016.

The most likely path lengths, measured in the number of convolutional layers trav‐
ersed, are midway between 0 and 50 (left graph). However, Veit et al. measured that
paths providing actually useful nonzero gradients in a trained ResNet were even
shorter than that, traversing around 12 layers.

According to this theory, a deep 50- or 100-layer ResNet acts as an ensemble—i.e., a
collection of shallower networks that optimally solve different parts of a classification
problem. Taken together, they pool their classification strengths, but they still con‐
verge efficiently because they are not actually very deep. The benefit of the ResNet
architecture compared to an actual ensemble of models is that it trains as a single
model and learns to select the best path for each input by itself.

Modular Architectures | 97

https://arxiv.org/abs/1605.06431
https://arxiv.org/abs/1605.06431
https://arxiv.org/abs/1605.06431
https://arxiv.org/abs/1605.06431

A third explanation looks at the topological landscape of the loss function optimized
during training. In “Visualizing the Loss Landscape of Neural Nets”, Li et al. managed
to picture the loss landscape in 3D rather than its original million or so dimensions
and showed that good minima were much more accessible when skip connections
were used (Figure 3-31).

Figure 3-31. The loss landscape of a 56-layer ResNet as visualized through the “filter
normalization scheme” of Li et al. Adding skip connections makes the global minimum
much easier to reach. Image from Li et al., 2017.

In practice, the ResNet architecture works very well and has become one of the most
popular convolutional architectures in the field, as well as the benchmark against
which all other advances are measured.

ResNet at a Glance
Architecture

Convolutional modules with skip connections

Publication
Kaiming He et al., “Deep Residual Learning for Image Recognition,” 2015,
https://arxiv.org/abs/1512.03385.

Code samples
03g_finetune_RESNET50_flowers104.ipynb and 03g_fromzero_RESNET50_flow‐
ers104.ipynb

98 | Chapter 3: Image Vision

https://arxiv.org/abs/1712.09913
https://arxiv.org/abs/1712.09913
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03g_finetune_RESNET50_flowers104.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03g_fromzero_RESNET50_flowers104.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03g_fromzero_RESNET50_flowers104.ipynb

Table 3-6. ResNet at a glance

Model Parameters (excl.
classif. heada)

ImageNet
accuracy

104 flowers F1
scoreb (fine-
tuning)

104 flowers F1
score (trained
from scratch)

ResNet50 23M 75% 94% prec.: 95%,
recall: 94%

73% prec.: 76%,
recall: 72%

Previous best for comparison:
InceptionV3 22M 78% 95% prec.: 95%,

recall: 94%

SqueezeNet, 24
layers

2.7M 76% prec.: 77%,
recall: 75%

a Excluding classification head from parameter counts for easier comparisons between architectures.
Without the classification head, the number of parameters in the network is resolution-independent. Also,
in fine-tuning examples, a different classification head might be used.
b For accuracy, precision, recall, and F1 score values, higher is better.

The classification performance is a bit below that achieved by
InceptionV3, but the main goal of ResNet was to allow very
deep architectures to still train and converge. Beyond
ResNet50, ResNet101 and ResNet152 variants are also available
with 101 and 152 layers.

DenseNet
The DenseNet architecture revisits the concept of skip connections with a radical new
idea. In their paper on DenseNet, Gao Huang et al. suggest feeding a convolutional
layer with all the outputs of the previous layers, by creating as many skip connections
as necessary. This time, data is combined by concatenation along the depth axis
(channels) instead of being added, as in ResNet. Apparently, the intuition that led to
the ResNet architecture—that data from skip connections should be added in because
“residual” signals were easier to learn—was not fundamental. Concatenation works
too.

Dense blocks are the basic building blocks of DenseNet. In a dense block, convolu‐
tions are grouped in pairs, with each pair of convolutions receiving as its input the
output of all previous convolution pairs. In the dense block depicted in Figure 3-32,
data is combined by concatenating it channel-wise. All convolutions are ReLU-
activated and use batch normalization. Channel-wise concatenation only works if the
height and width dimensions of the data are the same, so convolutions in a dense
block are all of stride 1 and do not change these dimensions. Pooling layers will have
to be inserted between dense blocks.

Modular Architectures | 99

https://arxiv.org/abs/1608.06993

Figure 3-32. A “dense block,” the basic building block of the DenseNet architecture. Con‐
volutions are grouped in pairs. Each pair of convolutions receives as input the output of
all previous convolution pairs. Notice that the number of channels grows linearly with
the number of layers.

100 | Chapter 3: Image Vision

Intuitively, one would think that concatenating all previously seen outputs would lead
to an explosive growth of the number of channels and parameters, but that is not in
fact the case. DenseNet is surprisingly economical in terms of learnable parameters.
The reason is that every concatenated block, which might have a relatively large num‐
ber of channels, is always fed first through a 1x1 convolution that reduces it to a small
number of channels, K. 1x1 convolutions are cheap in their number of parameters. A
3x3 convolution with the same number of channels (K) follows. The K resulting
channels are then concatenated to the collection of all previously generated outputs.
Each step, which uses a pair of 1x1 and 3x3 convolutions, adds exactly K channels to
the data. Therefore, the number of channels grows only linearly with the number of
convolutional steps in the dense block. The growth rate K is a constant throughout
the network, and DenseNet has been shown to perform well with fairly low values of
K (between K=12 and K=40 in the original paper).

Dense blocks and pooling layers are interleaved to create a full DenseNet network.
Figure 3-33 shows a DenseNet121 with 121 layers, but the architecture is configurable
and can easily scale beyond 200 layers.

The use of shallow convolutional layers (K=32, for example) is a characteristic feature
of DenseNet. In previous architectures, convolutions with over one thousand filters
were not rare. DenseNet can afford to use shallow convolutions because each convo‐
lutional layer sees all previously computed features. In other architectures, the data is
transformed at each layer and the network must do active work to preserve a channel
of data as-is, if that is the right thing to do. It must use some of its filter parameters to
create an identity function, which is wasteful. DenseNet, the authors argue, is built to
allow feature reuse and therefore requires far fewer filters per convolutional layer.

Modular Architectures | 101

Figure 3-33. DenseNet121 architecture. With a growth rate K=32, all convolutional lay‐
ers produce 32 channels of output, apart from the 1x1 convolutions used as transitions
between dense blocks, which are designed to halve the number of channels. See previous
figure for details about dense blocks. All convolutions are ReLU-activated and use batch
normalization.

102 | Chapter 3: Image Vision

DenseNet at a Glance
Architecture

Convolutional modules with a dense network of skip connections

Publication
Gao Huang et al., “Densely Connected Convolutional Networks,” 2016, https://
arxiv.org/abs/1608.06993.

Code samples
03h_finetune_DENSENET201_flowers104.ipynb and 03h_fromzero_DENSE‐
NET121_flowers104.ipynb

Table 3-7. DenseNet at a glance

Model Parameters (excl.
classif. heada)

ImageNet
accuracy

104 flowers F1
scoreb (fine-
tuning)

104 flowers F1
score (trained
from scratch)

DenseNet201 18M 77% 95% prec.: 96%,
recall: 95%

DenseNet121 7M 75% 76% prec.: 80%,
recall: 74%

Previous best for comparison:
InceptionV3 22M 78% 95% prec.: 95%,

recall: 94%

SqueezeNet, 24
layers

2.7M 76% prec.: 77%,
recall: 75%

a Excluding classification head from parameter counts for easier comparisons between architectures.
Without the classification head, the number of parameters in the network is resolution-independent. Also,
in fine-tuning examples, a different classification head might be used.
b For accuracy, precision, recall, and F1 score values, higher is better.

Depth-Separable Convolutions
Traditional convolutions filter all the channels of the input at once. They then use
many filters to give the network the opportunity to do many different things with the
same input channels. Let’s take the example of a 3x3 convolutional layer applied to 8
input channels with 16 output channels. It has 16 convolutional filters of shape 3x3x8
(Figure 3-34).

Modular Architectures | 103

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03h_finetune_DENSENET201_flowers104.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03h_fromzero_DENSENET121_flowers104.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03h_fromzero_DENSENET121_flowers104.ipynb

Figure 3-34. The weights of a 3x3 convolutional layer with 8 inputs and 16 outputs (16
filters). Many of the individual 3x3 filters are likely to be similar after training (shaded);
for example, a horizontal line detector filter.

In each 3x3x8 filter, there are really two operations happening simultaneously: a 3x3
filter is applied to every input channel across the height and width of the image (spa‐
tial dimensions), and filtered outputs are recombined in various ways across chan‐
nels. In short, the two operations are spatial filtering, combined with a linear
recombination of the filtered outputs. If these two operations turned out to be inde‐
pendent (or separable), without affecting the performance of the network, they could
be performed with fewer learnable weights. Let’s see why.

If we look at the 16 filters of a trained layer, it is probable that the network had to
reinvent the same 3x3 spatial filters in many of them, just because it wanted to com‐
bine them in different ways. In fact, this can be visualized experimentally
(Figure 3-35).

Figure 3-35. Visualization of some of the 12x12 filters from the first convolutional layer
of a trained neural network. Very similar filters have been reinvented multiple times.
Image from Sifre, 2014.

It looks like traditional convolutional layers use parameters inefficiently. That is why
Laurent Sifre suggested, in section 6.2 of his 2014 thesis “Rigid-Motion Scattering for
Image Classification,” to use a different kind of convolution called a depth-separable
convolution, or just a separable convolution. The main idea is to filter the input, chan‐
nel by channel, using a set of independent filters, and then combine the outputs sepa‐
rately using 1x1 convolutions, as depicted in Figure 3-36. The hypothesis is that there
is little “shape” information to be extracted across channels, and therefore a weighted
sum is all that is needed to combine them (a 1x1 convolution is a weighted sum of

104 | Chapter 3: Image Vision

https://oreil.ly/7Y4LL
https://oreil.ly/7Y4LL
https://oreil.ly/7Y4LL

channels). On the other hand, there is a lot of “shape” information in the spatial
dimensions of the image, and 3x3 filters or bigger are needed to catch it.

Figure 3-36. A 4x4 depth-separable convolutional layer. In phase 1, 4x4 filters are
applied independently to each channel, producing an equal number of output channels.
In phase 2, the output channels are then recombined using a 1x1 convolution (multiple
weighted sums of the channels).

In Figure 3-36, the phase 1 filtering operation can be repeated with new filter weights
to produce double or triple the number of channels. This is called a depth multiplier,
but its usual value is 1, which is why this parameter was not represented in the calcu‐
lation of the number of weights on the right.

The number of weights used by the example convolutional layer in Figure 3-36 can
easily be computed:

• Using a separable 3x3x8x16 convolutional layer: 3 * 3 * 8 + 8 * 16 = 200 weights
• Using a traditional convolutional layer: 3 * 3 * 8 * 16 = 1,152 weights (for

comparison)

Modular Architectures | 105

Since separable convolutional layers do not need to reinvent each spatial filter multi‐
ple times, they are significantly cheaper in terms of learnable weights. The question is
whether they are as efficient.

François Chollet argues in his paper “Xception: Deep Learning with Depthwise Sepa‐
rable Convolutions” that separable convolutions are in fact a concept very similar to
the Inception modules seen in a previous section. Figure 3-37(A) shows a simplified
Inception module with three convolutional paths, each made of a 1x1 convolution
followed by a 3x3 convolution. This is exactly equivalent to the representation in
Figure 3-37(B), where a single 1x1 convolution outputs three times more channels
than previously. Each of those blocks of channels is then picked up by a 3x3 convolu‐
tion. From there, it only takes a parameter adjustment—namely, increasing the num‐
ber of 3x3 convolutions—to arrive at Figure 3-37(C), where every channel coming
out of the 1x1 convolutions is picked up by its own 3x3 convolution.

Figure 3-37. Architectural similarity between Inception modules and depth-separable
convolutions: (A) a simplified Inception module with three parallel convolutional paths;
(B) an exactly equivalent setup where there is a single 1x1 convolution but it outputs
three times more channels; (C) a very similar setup with more 3x3 convolutions. This is
exactly a separable convolution with the order of the 1x1 and 3x3 operations swapped.

Figure 3-37(C) actually represents a depth-separable convolution with the 1x1
(depthwise) and 3x3 (spatial) operations swapped around. In a convolutional archi‐

106 | Chapter 3: Image Vision

https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1610.02357

tecture where these layers are stacked, this change in ordering does not matter much.
In conclusion, a simplified Inception module is very similar in its functionality to a
depth-separable convolution. This new building block is going to make convolutional
architectures both simpler and more economical in terms of learnable weights.

Separable convolutional layers are available in Keras:

tf.keras.layers.SeparableConv2D(filters,
 kernel_size,
 strides=(1, 1),
 padding='valid',
 depth_multiplier=1)

The new parameter, compared to a traditional convolutional layer, is the
depth_multiplier parameter. The following is a simplified description of the param‐
eters (see the Keras documentation for full details):

filters

The number of output channels to produce in the final 1x1 convolution.

kernel_size

The size of each spatial filter. This can be a single number, like 3 for a 3x3 filter,
or a pair like (4, 2) for a rectangular 4x2 filter.

strides

The step of the convolution for the spatial filtering.

padding

'valid' for no padding, or 'same' for zero-padding.

depth_multiplier

The number of times the spatial filtering operation is repeated. Defaults to 1.

Xception
The Xception architecture (Figure 3-38) combines separable convolutions with
ResNet-style skip connections. Since separable convolutions are somewhat equivalent
to Inception-style branching modules, Xception offers a combination of both ResNet
and Inception architectural features in a simpler design. Xception’s simplicity makes
it a good choice when you want to implement your own convolutional backbone. The
source code for the Keras implementation of Xception is easily accessible from the
documentation.

Modular Architectures | 107

https://oreil.ly/0ymie
https://arxiv.org/abs/1610.02357
https://oreil.ly/rcCq6

Figure 3-38. The Xception architecture with 36 convolutional layers. The architecture is
inspired by ResNet but uses separable convolutions instead of traditional ones, except in
the first two layers.

In Figure 3-38, all convolutional layers are ReLU-activated and use batch normaliza‐
tion. All separable convolutions use a depth multiplier of 1 (no channel expansion).

The residual blocks in Xception are different from their ResNet counterparts: they
use 3x3 separable convolutions instead of the mix of 3x3 and 1x1 traditional convolu‐
tions in ResNet. This makes sense since 3x3 separable convolutions are already a
combination of 3x3 and 1x1 convolutions (see Figure 3-36). This further simplifies
the design.

It is also to be noted that although depth-separable convolutions have a depth multi‐
plier parameter that allows the initial 3x3 convolutions to be applied multiple times to
each input channel with independent weights, the Xception architecture obtains good
results with a depth multiplier of 1. This is actually the most common practice. All

108 | Chapter 3: Image Vision

other architectures described in this chapter that are based on depth-separable con‐
volutions use them without the depth multiplier (leaving it at 1). It seems that adding
parameters in the 1x1 part of the separable convolution is enough to allow the model
to capture the relevant information in input images.

Xception at a Glance
Architecture

Residual blocks based on depth-separable convolutional layers

Publication
François Chollet, “Xception: Deep Learning with Depthwise Separable Convolu‐
tions,” 2016, https://arxiv.org/abs/1610.02357.

Code samples
03i_finetune_XCEPTION_flowers104.ipynb and 03i_fromzero_XCEPTION_flow‐
ers104.ipynb

Table 3-8. Xception at a glance

Model Parameters (excl.
classif. heada)

ImageNet
accuracy

104 flowers F1
scoreb (fine-
tuning)

104 flowers F1
score (trained
from scratch)

Xception 21M 79% 95% prec.: 95%,
recall: 95%

83% prec.: 84%,
recall: 82%

Previous best for comparison:
DenseNet201 18M 77% 95% prec.: 96%,

recall: 95%

DenseNet121 7M 75% 76% prec.: 80%,
recall: 74%

InceptionV3 22M 78% 95% prec.: 95%,
recall: 94%

SqueezeNet, 24
layers

2.7M 76% prec.: 77%,
recall: 75%

a Excluding classification head from parameter counts for easier comparisons between architectures.
Without the classification head, the number of parameters in the network is resolution-independent. Also,
in fine-tuning examples, a different classification head might be used.
b For accuracy, precision, recall, and F1 score values, higher is better.

Modular Architectures | 109

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03i_finetune_XCEPTION_flowers104.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03i_fromzero_XCEPTION_flowers104.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03i_fromzero_XCEPTION_flowers104.ipynb

Neural Architecture Search Designs
The convolutional architectures described in the previous pages are all made of simi‐
lar elements arranged in different ways: 3x3 and 1x1 convolutions, 3x3 separable con‐
volutions, additions, concatenations… Couldn’t the search for the ideal combination
be automated? Let’s look at architectures that can do this.

NASNet
Automating the search for the optimal combination of operations is precisely what
the authors of the NASNet paper did. However, a brute-force search through the
entire set of possible operations would have been too large a task. There are too many
ways to choose and assemble layers into a full neural network. Furthermore, each
piece has many hyperparameters, like the number of its output channels or the size of
its filters.

Instead, they simplified the problem in a clever way. Looking back at the Inception,
ResNet, or Xception architectures (Figures 3-24, 3-29, and 3-38, respectively), it is
easy to see that they are constructed from two types of repeated modules: one kind
that leaves the width and height of the features intact (“normal cells”) and another
that divides them in half (“reduction cells”). The NASNet authors used an automated
algorithm to design the structure of these basic cells (see Figure 3-39) and then
assembled a convolutional architecture by hand, by stacking the cells with reasonable
parameters (channel depth, for example). They then trained the resulting networks to
see which module design worked the best.

Figure 3-39. Some of the individual operations used as NASNet building blocks.

The search algorithm can either be a random search, which actually did not perform
so badly in the study, or a more sophisticated one also based on neural networks
called reinforcement learning. To learn more about reinforcement learning, see Andrej
Karpathy’s “Pong from Pixels” post or Martin Görner’s and Yu-Han Liu’s “Reinforce‐
ment Learning Without a PhD” Google I/O 2018 video.

110 | Chapter 3: Image Vision

https://arxiv.org/abs/1707.07012
https://oreil.ly/Qjy9V
https://oreil.ly/BMIeQ
https://oreil.ly/BMIeQ

Figure 3-40 shows the structure of the best normal and reduction cells found by the
algorithm. Note that the search space allowed connections from not only the previous
stage but also the one before, to mimic more densely connected architectures like
DenseNet.

Figure 3-40. The best-performing convolutional cells found through neural architecture
search in the NASNet paper. They are made of separable convolutions well as average
and max-pooling layers.

The paper notes that separable convolutions are always used doubled (“sep 3x3” in
Figure 3-40 actually indicates two consecutive 3x3 separable convolutions), which has
been empirically found to increase performance.

Figure 3-41 shows how the cells are stacked to form a complete neural network.

Different NASNet scales can be obtained by adjusting the N and M parameters—for
example, N=7 and M=1,920 for the most widely used variant, which has 22.6M
parameters. All convolutional layers in the figure are ReLU-activated and use batch
normalization.

Neural Architecture Search Designs | 111

Figure 3-41. Stacking of the normal and reduction cells to create a complete neural net‐
work. Normal cells are repeated N times. The number of channels is multiplied by 2 in
every reduction cell to obtain M output channels at the end.

There are a few interesting details to note about what the algorithm does:

• It only uses separable convolutions, although regular convolutions were part of
the search space. This seems to confirm the benefits of separable convolutions.

• When merging branches, the algorithm chooses to add results rather than con‐
catenate them. This is similar to ResNet but unlike Inception or DenseNet, which
use concatenations. (Note that the last concatenation in each cell is forced by the
architecture and was not chosen by the algorithm.)

• In the normal cell, the algorithm chooses multiple parallel branches, rather than
fewer branches, and more layers of transformations. This is more like Inception,
and less like ResNet.

• The algorithm uses separable convolutions with large 5x5 or 7x7 filters rather
than implementing everything with 3x3 convolutions. This runs contrary to the
“filter factorization” hypothesis outlined earlier in this chapter, and indicates that
the hypothesis might not hold after all.

112 | Chapter 3: Image Vision

Some choices seem dubious, though, and are probably an artifact of the search space
design. For example, in the normal cell, 3x3 average-pooling layers with a stride of 1
are basically blur operations. Maybe a blur is useful, but blurring the same input twice
then adding the results is certainly not optimal.

NASNet at a Glance
Architecture

Complex, machine-generated

Publication
Barret Zoph et al., “Learning Transferable Architectures for Scalable Image Rec‐
ognition,” 2017, https://arxiv.org/abs/1707.07012.

Code sample
03j_finetune_NASNETLARGE_flowers104.ipynb

Table 3-9. NASNet at a glance

Model Parameters (excl.
classification heada)

ImageNet accuracy 104 flowers F1 scoreb

(fine-tuning)
NASNetLarge 85M 82% 89% precision: 92%,

recall: 89%
Previous best for comparison:
DenseNet201 18M 77% 95% precision: 96%,

recall: 95%
Xception 21M 79% 95% precision: 95%,

recall: 95%
a Excluding classification head from parameter counts for easier comparisons between architectures.
Without the classification head, the number of parameters in the network is resolution-independent. Also,
in fine-tuning examples, a different classification head might be used.
b For accuracy, precision, recall, and F1 score values, higher is better.

Despite its hefty weight count, NASNetLarge is not the best
model for the 104 flowers dataset (achieving an F1 score of
89% versus 95% for the other models). This is probably
because a large set of trainable parameters requires more train‐
ing data.

Neural Architecture Search Designs | 113

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03j_finetune_NASNETLARGE_flowers104.ipynb

The MobileNet Family
In the next couple of sections, we will describe the MobileNetV2/MnasNet/Efficient‐
Net family of architectures. MobileNetV2 fits in this “neural architecture search” sec‐
tion because it introduces new building blocks that help design a more efficient
search space. Although the initial MobileNetV2 was designed by hand, follow-up ver‐
sions MnasNet and EfficientNet use the same building blocks for automated neural
architecture search and end up with optimized but very similar architectures. Before
we discuss this set of architectures, however, first we need to introduce two new
building blocks: depthwise convolutions and inverted residual bottlenecks.

Depthwise convolutions
The first building block we need to explain in order to understand the MobileNetV2
architecture is depthwise convolutions. The MobileNetV2 architecture revisits depth-
separable convolutions and their interactions with skip connections. To make this
fine-grained analysis possible, we must first split the depth-separable convolutions
described previously (Figure 3-36) into their basic components:

• The spatial filtering part, called a depthwise convolution (Figure 3-42)
• A 1x1 convolution

In Figure 3-42, the filtering operation can be repeated with new filter weights to pro‐
duce double or triple the number of channels. This is called a “depth multiplier” but
its usual value is 1, which is why it is not represented in the picture.

Depthwise convolutional layers are available in Keras:

tf.keras.layers.DepthwiseConv2D(kernel_size,
 strides=(1, 1),
 padding='valid',
 depth_multiplier=1)

Note that a depth-separable convolution, such as:

tf.keras.layers.SeparableConv2D(filters=128, kernel_size=(3,3))

can also be represented in Keras as a sequence of two layers:

tf.keras.layers.DepthwiseConv2D(kernel_size=(3,3)
tf.keras.layers.Conv2D(filters=128, kernel_size=(1,1))

114 | Chapter 3: Image Vision

https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1807.11626
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1801.04381

Figure 3-42. A depthwise convolutional layer. Convolutional filters are applied inde‐
pendently to each input channel, producing an equal number of output channels.

Inverted residual bottlenecks
The second and most important building block in the MobileNet family is the inver‐
ted residual bottleneck. Residual blocks used in ResNet or Xception architectures
tend to keep the number of channels flowing through skip connections high (see
Figure 3-43 below). In the MobileNetV2 paper, the authors make the hypothesis that
the information that skip connections help preserve is inherently low-dimensional.
This makes sense intuitively. If a convolutional block specializes in detecting, for
example “cat whiskers,” the information in its output (“whiskers detected at position
(3, 16)”) can be represented along three dimensions: class, x, y. Compared with the
pixel representation of whiskers, it is low-dimensional.

The MobileNetV2 architecture introduces a new residual block design that places
skip connections where the number of channels is low and expands the number of
channels inside residual blocks. Figure 3-43 compares the new design to the typical
residual blocks used in ResNet and Xception. The number of channels in ResNet
blocks follows the sequence “many – few – many,” with skip connections between the
“many channels” stages. Xception does “many – many – many.” The new Mobile‐
NetV2 design follows the sequence “few – many – few.” The paper calls this technique
inverted residual bottlenecks—“inverted” because it is the exact opposite of the ResNet
approach, “bottleneck” because the number of channels is squeezed in between resid‐
ual blocks, like the neck of a bottle.

Neural Architecture Search Designs | 115

https://arxiv.org/abs/1801.04381

Figure 3-43. The new residual block design in MobileNetV2 (called an “inverted residual
bottleneck”), compared with ResNet and Xception residual blocks. “dw-cnv” stands for
depthwise convolution. Separable convolutions used by Xception are represented by their
components: “dw-cnv” followed by “conv 1x1.”

The goal of this new residual block is to offer the same expressivity as prior designs
with a dramatically reduced weight count and, even more importantly, a reduced
latency at inference time. MobileNetV2 was indeed designed to be used on mobile
phones, where compute resources are scarce. The weight counts of the typical resid‐
ual blocks represented in Figure 3-43 are 1.1M, 52K, and 1.6M respectively for the
ResNet, MobileNetV2, and Xception blocks.

The authors of the MobileNetV2 paper argue that their design can achieve good
results with fewer parameters because the information that flows between residual
blocks is low-dimensional in nature and can therefore be represented in a limited
number of channels. However, one construction detail is important: the last 1x1 con‐
volution in the inverted residual block, the one that squeezes the feature map back to
“few” channels, is not followed by a nonlinear activation. The MobileNetV2 paper
covers this topic at some length, but the short version is that in a low-dimensional
space, a ReLU activation would destroy too much information.

116 | Chapter 3: Image Vision

We are now ready to build a full MobileNetV2 model and then use neural architec‐
ture search to refine it into the optimized, but otherwise very similar, MnasNet and
EfficientNet architectures.

MobileNetV2
We can now put together the MobileNetV2 convolutional stack. MobileNetV2 is built
out of multiple inverted residual blocks, as shown in Figure 3-44.

Figure 3-44. The MobileNetV2 architecture, based on repeated inverted residual bottle‐
necks. Repeat counts are in the center column. “conv” indicates regular convolutional
layers, while “dw-cnv” denotes depthwise convolutions.

In Figure 3-44, inverted residual bottleneck blocks are marked “i-res-bttl N, M” and
parameterized by their internal (N) and external channel depth (M). Every sequence
marked “strides 2, 1” starts with an inverted bottleneck block with a stride of 2 and no
skip connection. The sequence continues with regular inverted residual bottleneck
blocks. All convolutional layers use batch normalization. Please note that the last con‐
volutional layer in inverted bottleneck blocks does not use an activation function.

Neural Architecture Search Designs | 117

The activation function in MobileNetV2 is ReLU6, instead of the usual ReLU. Later
evolutions of MobileNetV2 went back to using standard ReLU activation functions.
The use of ReLU6 in MobileNetV2 is not a fundamental implementation detail.

MobileNetV2 at a Glance
Architecture

Sequence of inverted residual bottlenecks

Publication
Mark Sandler et al., “MobileNetV2: Inverted Residuals and Linear Bottlenecks,”
2018, https://arxiv.org/abs/1801.04381.

Code sample
03k_finetune_MOBILENETV2_flowers104.ipynb

Table 3-10. MobileNetV2 at a glance

Model Parameters (excl.
classification heada)

ImageNet accuracy 104 flowers F1 scoreb

(fine-tuning)
MobileNetV2 2.3M 71% 92% precision: 92%,

recall: 92%
Previous best for comparison:
NASNetLarge 85M 82% 89% precision: 92%,

recall: 89%
DenseNet201 18M 77% 95% precision: 96%,

recall: 95%
Xception 21M 79% 95% precision: 95%,

recall: 95%
a Excluding classification head from parameter counts for easier comparisons between architectures.
Without the classification head, the number of parameters in the network is resolution-independent. Also,
in fine-tuning examples, a different classification head might be used.
b For accuracy, precision, recall, and F1 score values, higher is better.

MobileNetV2 is optimized for a low weight count and sacrifi‐
ces a bit of accuracy for it. Also, in the 104 flowers fine-tuning
example, it converged significantly slower than other models.
It can still be a good choice when mobile inference perfor‐
mance is important.

118 | Chapter 3: Image Vision

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03k_finetune_MOBILENETV2_flowers104.ipynb

The MobileNetV2 simple structure of repeated inverted residual bottleneck blocks
lends itself well to automated neural architecture search methods. That is how the
MnasNet and EfficientNet architectures were created.

EfficientNet: Putting it all together
The team that created MobileNetV2 later refined the architecture through automated
neural architecture search, using inverted residual bottlenecks as the building blocks
of their search space. The MnasNet paper summarizes their initial findings. The most
interesting result of that research is that, once again, the automated algorithm rein‐
troduced 5x5 convolutions into the mix. This was already the case in NASNet, as we
saw earlier. This is interesting because all manually constructed architectures had
standardized on 3x3 convolutions, justifying the choice with the filter factorization
hypothesis. Apparently, larger filters like 5x5 are useful after all.

We’ll skip a formal description of the MnasNet architecture in favor of its next itera‐
tion: EfficientNet. This architecture was developed using the exact same search space
and network architecture search algorithm as MnasNet, but the optimization goal
was tweaked toward prediction accuracy rather than mobile inference latency. Inver‐
ted residual bottlenecks from MobileNetV2 are again the basic building blocks.

EfficientNet is actually a family of neural networks of different sizes, where a lot of
attention was paid to the scaling of the networks in the family. Convolutional archi‐
tectures have three main ways of scaling:

• Use more layers.
• Use more channels in each layer.
• Use higher-resolution input images.

The EfficientNet paper points out that these three scaling axes are not independent:
“If the input image is bigger, then the network needs more layers to increase the
receptive field and more channels to capture more fine-grained patterns on the bigger
image.”

The novelty in the EfficientNetB0 through EfficientNetB7 family of neural networks
is that they are scaled along all three scaling axes rather than just one, as was the case
in earlier architecture families such as ResNet50/ResNet101/ResNet152. The Effi‐
cientNet family is today the workhorse of many applied machine learning teams
because it offers optimal performance levels for every weight count. Research evolves
fast though, and by the time this book is printed, it is probable that an even better
architecture will have been discovered.

Figure 3-45 describes the baseline EfficientNetB0 architecture. Notice the similarity
with MobileNetV2.

Neural Architecture Search Designs | 119

https://arxiv.org/abs/1807.11626
https://arxiv.org/abs/1905.11946

Figure 3-45. The EfficientNetB0 architecture. Notice the strong similarity with Mobile‐
NetV2 (Figure 3-44).

In Figure 3-45, sequences of inverted residual bottlenecks are noted [i-res-bttl(KxK)
P*Ch, Ch] ✕ N, where:

• Ch is the external number of channels output by each block.
• The internal number of channels is typically a multiple P of the external chan‐

nels: P*Ch.
• KxK is the convolutional filter size, typically 3x3 or 5x5.
• N is the number of such consecutive layer blocks.

Every sequence marked “strides 2, 1” starts with an inverted bottleneck block with a
stride of 2 and no skip connection. The sequence continues with regular inverted
residual bottleneck blocks. As previously mentioned, “conv” indicates regular convo‐
lutional layers, while “dw-cnv” denotes depthwise convolutions.

EfficientNetB1 through B7 have the exact same general structure, with seven sequen‐
ces of inverted residual bottlenecks; only the parameters differ. Figure 3-46 provides
the scaling parameters for the entire family.

120 | Chapter 3: Image Vision

Figure 3-46. The EfficientNetB0 through EfficientNetB7 family, showing the parameters
of the seven sequences of inverted residual bottlenecks that make up the EfficientNet
architecture.

As shown in Figure 3-46, each neural network in the family has an ideal input image
size. It has been trained on images of this size, though it can also be used with other
image sizes. The number of layers and number of channels in each layer are scaled
along with the input image size. The multiplier between the external and internal
number of channels in inverted residual bottlenecks is always 6, apart from in the first
row where it is 1.

Neural Architecture Search Designs | 121

So are these scaling parameters actually effective? The EfficientNet paper shows they
are. The compound scaling outlined above is more efficient than scaling the network
by layers, channels, or image resolution alone (Figure 3-47).

Figure 3-47. Accuracy of EfficientNet classifiers scaled using the compound scaling
method from the EfficientNet paper versus scaling by a single factor: width (the number
of channels in convolutional blocks), depth (the number of convolutional layers), or
image resolution. Image from Tan & Le, 2019.

The authors of the EfficientNet paper also used the class activation map technique
from Zhou et al., 2016 to visualize what the trained networks “see.” Again, compound
scaling achieves better results by helping the network focus on the important parts of
the image (Figure 3-48).

122 | Chapter 3: Image Vision

https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1512.04150

Figure 3-48. Class activation maps (Zhou et al., 2016) for two input images as seen
through several EfficientNet variants. The model obtained through compound scaling
(last column) focuses on more relevant regions with more object detail. Image from Tan
& Le, 2019.

EfficientNet also incorporates some additional optimizations. Briefly:

• Every inverted bottleneck block is further optimized through the “squeeze-excite”
channel optimization, as per Jie et al., 2017. This technique is a channel-wise
attention mechanism that “renormalizes” output channels (i.e., boosts some and
attenuates others) before the final 1x1 convolution of each block. Like any “atten‐
tion” technique, it involves a small additional neural network that learns to pro‐
duce the ideal renormalization weights. This additional network is not
represented in Figure 3-45. Its contribution to the total count of learnable
weights is small. This technique can be applied to any convolutional block, not
just inverted residual bottlenecks, and boosts network accuracy by about one
percentage point.

• Dropout is used in all members of the EfficientNet family to help with overfit‐
ting. Larger networks in the family use slightly larger dropout rates (0.2, 0.2, 0.3,
0.3, 0.4, 0.4, 0.5, and 0.5, respectively, for EfficientNetB0 through B7).

• The activation function used in EfficientNet is SiLU (also called Swish-1) as
described in Ramachandran et al., 2017. The function is f(x) = x ⋅ sigmoid(x).

• The training dataset was automatically expanded using the AutoAugment techni‐
que, as described in Cubuk et al., 2018.

• The “stochastic depth” technique is used during training, as described in Huang
et al., 2016. We are not sure how effective this part was since the stochastic depth
paper itself reports that the technique does not work with a ResNet152 trained on
ImageNet. It might do something on deeper networks.

Neural Architecture Search Designs | 123

https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1709.01507
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1805.09501
https://arxiv.org/abs/1603.09382
https://arxiv.org/abs/1603.09382

EfficientNet at a Glance
Architecture

Sequence of inverted residual bottlenecks

Code samples
03l_finetune_EFFICIENTNETB6_flowers104.ipynb, 03l_finetune_EFFICIENTNET
B7_TFHUB_flowers104.ipynb, and 03l_fromzero_EFFICIENTNETB4_ flowers
104.ipynb

Publication
Mingxing Tan and Quoc V. Le, “EfficientNet: Rethinking Model Scaling for Con‐
volutional Neural Networks,” 2019, arXiv:1905.11946.

EfficientNetB6 and B7 currently top the ImageNet classification charts with an accu‐
racy of 84%. Fine-tuned on our 104 flowers dataset, however, they perform only
marginally better than Xception, DenseNet201, or InceptionV3. All of these models
tend to achieve precision and recall values of 95% on this dataset and saturate there.
The dataset is probably too small to go further.

You will find a table summarizing all the results in the next section.

Beyond Convolution: The Transformer Architecture
The architectures for computer vision that are discussed in this chapter all rely on
convolutional filters. Compared to the naive dense neural networks discussed in
Chapter 2, convolutional filters reduce the number of weights necessary to learn how
to extract information from images. However, as dataset sizes keep increasing, there
comes a point where this weight reduction is no longer necessary.

Ashish Vaswani et al. proposed the Transformer architecture for natural language
processing in a 2017 paper with the catchy title “Attention Is All You Need.” As the
title indicates, the key innovation in the Transformer architecture is the concept of
attention—having the model focus on some part of the input text sequence when pre‐
dicting each word. For example, consider a model that needs to translate the French
phrase “ma chemise rouge” into English (“my red shirt”). The model would learn to
focus on the word rouge when predicting the second word of the English translation,
red. The Transformer model achieves this by using positional encodings. Instead of
simply representing the input phrase by its words, it adds the position of each word
as an input: (ma, 1), (chemise, 2), (rouge, 3). The model then learns from the training
dataset which word of the input it needs to focus on when predicting a specific word
of the output.

The Vision Transformer (ViT) model adapts the Transformer idea to work on images.
The equivalent of words in images are square patches, so the first step is to take the

124 | Chapter 3: Image Vision

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03l_finetune_EFFICIENTNETB6_flowers104.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03l_finetune_EFFICIENTNETB7_TFHUB_flowers104.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03l_finetune_EFFICIENTNETB7_TFHUB_flowers104.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03l_fromzero_EFFICIENTNETB4_flowers104.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03l_fromzero_EFFICIENTNETB4_flowers104.ipynb
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2010.11929

input image and break it into patches, as shown in Figure 3-49 (the full code is avail‐
able in 03m_transformer_flowers104.ipynb on GitHub):

patches = tf.image.extract_patches(
 images=images,
 sizes=[1, self.patch_size, self.patch_size, 1],
 strides=[1, self.patch_size, self.patch_size, 1],
 rates=[1, 1, 1, 1],
 padding="VALID",
)

Figure 3-49. The input image is broken into patches that are treated as the sequence
input to the Transformer.

The patches are represented by concatenating the patch pixel values and the patch
position within the image:

encoded = (tf.keras.layers.Dense(...)(patch) +
 tf.keras.layers.Embedding(...)(position))

Note that the patch position is the ordinal number (5th, 6th, etc.) of the patch and is
treated as a categorical variable. A learnable embedding is employed to capture close‐
ness relationships between patches that have related content.

The patch representation is passed through multiple transformer blocks, each of
which consists of an attention head (to learn which parts of the input to focus on):

x1 = tf.keras.layers.LayerNormalization()(encoded)
attention_output = tf.keras.layers.MultiHeadAttention(
 num_heads=num_heads, key_dim=projection_dim, dropout=0.1
)(x1, x1)

The attention output is used to add emphasis to the patch representation:

Skip connection 1.
x2 = tf.keras.layers.Add()([attention_output, encoded])
Layer normalization 2.
x3 = tf.keras.layers.LayerNormalization()(x2)

and passed through a set of dense layers:

Beyond Convolution: The Transformer Architecture | 125

https://www.github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03m_transformer_flowers104.ipynb

multilayer perceptron (mlp), a set of dense layers.
x3 = mlp(x3, hidden_units=transformer_units,
 dropout_rate=0.1)
Skip connection 2 forms input to next block
encoded = tf.keras.layers.Add()([x3, x2])

The training loop is similar to that of any of the convolutional network architectures
discussed in this chapter. Note that the ViT architecture requires a lot more data than
convolutional network models—the authors suggest pretraining the ViT model on
large amounts of data and then fine-tuning on smaller datasets. Indeed, training from
scratch on the 104 flowers dataset yields only a 34% accuracy.

Even though not particularly promising at present for our relatively small dataset, the
idea of applying the Transformer architecture to images is interesting, and a potential
source of new innovations in computer vision.

Choosing a Model
This section will provide some tips on choosing a model architecture for your task.
First of all, create a benchmark using code-free services to train ML models so that
you have a good idea of what kind of accuracy is achievable on your problem. If you
are training on Google Cloud, consider Google Cloud AutoML, which utilizes neural
architecture search (NAS). If you are using Microsoft Azure, consider Custom Vision
AI. DataRobot and H2O.ai employ transfer learning for code-free image classifica‐
tion. It is unlikely that you will get an accuracy that is significantly higher than what
these services provide out of the box, so you can use them as a way to quickly do a
proof of concept before you invest too much time on an infeasible problem.

Performance Comparison
Let’s summarize the performance numbers seen so far, first for fine-tuning
(Table 3-11). Notice the new entrant at the bottom, called “ensemble.” We will cover
this in the next section.

Table 3-11. Eight model architectures fine-tuned on the 104 flowers dataset

Model Parameters (excl. classification
heada)

ImageNet accuracy 104 flowers F1 scoreb

(fine-tuning)
EfficientNetB6 40M 84% 95.5%
EfficientNetB7 64M 84% 95.5%
DenseNet201 18M 77% 95.4%
Xception 21M 79% 94.6%
InceptionV3 22M 78% 94.6%
ResNet50 23M 75% 94.1%
MobileNetV2 2.3M 71% 92%

126 | Chapter 3: Image Vision

https://oreil.ly/bw0fE
https://www.customvision.ai
https://www.customvision.ai
https://oreil.ly/I6GHs
https://oreil.ly/dubZl

Model Parameters (excl. classification
heada)

ImageNet accuracy 104 flowers F1 scoreb

(fine-tuning)
NASNetLarge 85M 82% 89%
VGG19 20M 71% 88%
Ensemble 79M (DenseNet210 + Xception +

EfficientNetB6)
- 96.2%

a Excluding classification head from parameter counts for easier comparisons between architectures. Without the classification
head, the number of parameters in the network is resolution-independent. Also, in fine-tuning examples, a different
classification head might be used.
b For accuracy, precision, recall, and F1 score values, higher is better.

And now for training from scratch (Table 3-12). Since fine-tuning worked much bet‐
ter on the 104 flowers dataset, not all the models have been trained from scratch.

Table 3-12. Six model architectures trained from scratch on the 104 flowers dataset

Model Parameters (excl.
classification heada)

ImageNet accuracy 104 flowers F1 scoreb

(trained from scratch)
Xception 21M 79% 82.6%
SqueezeNet, 24 layers 2.7M - 76.2%
DenseNet121 7M 75% 76.1%
ResNet50 23M 75% 73%
EfficientNetB4 18M 83% 69%
AlexNet 3.7M 60% 39%
a Excluding classification head from parameter counts for easier comparisons between architectures. Without the classification
head, the number of parameters in the network is resolution-independent. Also, in fine-tuning examples, a different
classification head might be used.
b For accuracy, precision, recall, and F1 score values, higher is better.

Xception takes the first spot here, which is a bit surprising since it is not the most
recent architecture. Xception’s author also noticed in his paper that his model seemed
to work better than others when applied to real-world datasets other than ImageNet
and other standard datasets used in academia. The fact that the second spot is taken
by a SqueezeNet-like model quickly thrown together by the author of the book is sig‐
nificant. When you want to try your own architecture, SqueezeNet is both very sim‐
ple to code and quite efficient. This model is also the smallest one in the selection. Its
size is probably well adapted to the relatively small size of the 104 flowers dataset
(approximately 20K pictures). The DenseNet architecture shares the second place
with SqueezeNet. It is by far the most unconventional architecture in this selection,
but it seems to have a lot of potential on unconventional datasets.

It might be worth looking at the other variations and versions of these models to pick
the most suitable and most up-to-date one. As mentioned, EfficientNet was the state-
of-the-art model at the time we wrote this book (January 2021). There might be

Choosing a Model | 127

something newer by the time you are reading it. You can check TensorFlow Hub for
new models.

A last option is to use multiple models at the same time, a technique called ensem‐
bling. We’ll look at this next.

Ensembling
When looking for the maximum accuracy, and when model size and inference times
are not an issue, multiple models can be used at the same time and their predictions
combined. Such ensemble models can often give better predictions than any of the
models composing them. Their predictions are also more robust on real-life images.
The key consideration when selecting models to ensemble is to choose models that
are as different as possible from each other. Models with very different architectures
are more likely to have different weaknesses. When combined in an ensemble, the
strengths and weaknesses of different models will compensate for each other, as long
as they are not in the same classes.

A notebook, 03z_ensemble_finetune_flowers104.ipynb, is provided in the GitHub
repository showcasing an ensemble of three models fine-tuned on the 104 flowers
dataset: DenseNet210, Xception, and EfficientNetB6. As seen in Table 3-13, the
ensemble wins by a respectable margin.

Table 3-13. Comparison of model ensembling versus individual models

Model Parameters (excl.
classification heada)

ImageNet accuracy 104 flowers F1 scoreb

(fine-tuning)
EfficientNetB6 40M 84% 95.5%
DenseNet201 18M 77% 95.4%
Xception 21M 79% 94.6%
Ensemble 79M 96.2%
a Excluding classification head from parameter counts for easier comparisons between architectures. Without the classification
head, the number of parameters in the network is resolution-independent. Also, in fine-tuning examples, a different
classification head might be used.
b For accuracy, precision, recall, and F1 score values, higher is better.

The easiest way to ensemble the three models is to average the class probabilities they
predict. Another possibility, theoretically better, is to average their logits (the outputs
of the last layer before softmax activation) and apply softmax on the averages to com‐
pute class probabilities. The sample notebook shows both options. On the 104 flowers
dataset, they perform equally.

128 | Chapter 3: Image Vision

https://www.tensorflow.org/hub
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/03_image_models/03z_ensemble_finetune_flowers104.ipynb

One point of caution when averaging logits is that logits, contrary
to probabilities, are not normalized. They can have very different
values in different models. Computing a weighted average instead
of a simple average might help in that case. The training dataset
should be used to compute the best weights.

Recommended Strategy
Here is our recommended strategy to tackle computer vision problems.

First, choose your training method based on the size of your dataset:

• If you have a very small dataset (less than one thousand images per label), use
transfer learning.

• If you have a moderate-sized dataset (one to five thousand images per label), use
fine-tuning.

• If you have a large dataset (more than five thousand images per label), train from
scratch.

These numbers are rules of thumb and vary depending on the difficulty of the use
case, the complexity of your model, and the quality of the data. You may have to
experiment with a couple of the options. For example, the 104 flowers dataset has
between one hundred and three thousand images per class, depending on the class;
fine-tuning was still very effective on it.

Whether you are doing transfer learning, fine-tuning, or training from scratch, you
will need to select a model architecture. Which one should you pick?

• If you want to roll your own layers, start with SqueezeNet. It’s the simplest model
that will perform well.

• For edge devices, you typically want to optimize for models that can be downloa‐
ded fast, occupy very little space on the device, and don’t incur high latencies
during prediction. For a small model that runs fast on low-power devices, con‐
sider MobileNetV2.

• If you don’t have size/speed restrictions (such as if inference will be done on
autoscaling cloud systems) and want the best/fanciest model, consider Efficient‐
Net.

• If you belong to a conservative organization that wants to stick with something
tried and true, choose ResNet50 or one of its larger variants.

If training cost and prediction latency are not of concern, or if small improvements in
model accuracy bring outside rewards, consider an ensemble of three complementary
models.

Choosing a Model | 129

Summary
This chapter focused on image classification techniques. It first explained how to use
pretrained models and adapt them to a new dataset. This is by far the most popular
technique and will work if the pretraining dataset and the target dataset share at least
some similarities. We explored two variants of this technique: transfer learning,
where the pretrained model is frozen and used as a static image encoder; and fine-
tuning, where the weights of the pretrained model are used as initial values in a new
training run on the new dataset. We then examined the historical and current state-
of-the-art image classification architectures, from AlexNet to EfficientNets. All the
building blocks of these architectures were explained, starting of course with convo‐
lutional layers, to give you a complete understanding of how these models work.

In Chapter 4, we will look at using any of these image model architectures to solve
common computer vision problems.

130 | Chapter 3: Image Vision

CHAPTER 4

Object Detection and Image Segmentation

So far in this book, we have looked at a variety of machine learning architectures but
used them to solve only one type of problem—that of classifying (or regressing) an
entire image. In this chapter, we discuss three new vision problems: object detection,
instance segmentation, and whole-scene semantic segmentation (Figure 4-1). Other
more advanced vision problems like image generation, counting, pose estimation,
and generative models are covered in Chapters 11 and 12.

Figure 4-1. From left to right: object detection, instance segmentation, and whole-scene
semantic segmentation. Images from Arthropods and Cityscapes datasets.

The code for this chapter is in the 04_detect_segment folder of the
book’s GitHub repository. We will provide file names for code sam‐
ples and notebooks where applicable.

131

https://oreil.ly/sRrvU
https://oreil.ly/rs9zf
https://github.com/GoogleCloudPlatform/practical-ml-vision-book

Object Detection
Seeing is, for most of us, so effortless that, as we glimpse a butterfly from the corner
of our eye and turn our head to enjoy its beauty, we don’t even think about the mil‐
lions of visual cells and neurons at play, capturing light, decoding the signals, and
processing them into higher and higher levels of abstraction.

We saw in Chapter 3 how image recognition in ML works. However, the models pre‐
sented in that chapter were built to classify an image as whole—they could not tell us
where in the image a flower was. In this section, we will look at ways to build ML
models that can provide this location information. This is a task known as object
detection (Figure 4-2).

Figure 4-2. An object detection task. Image from Arthropods dataset.

In fact, convolutional layers do identify and locate the things they detect. The convo‐
lutional backbones from Chapter 3 already extract some location information. But in
classification problems, the networks make no use of this information. They are
trained on an objective where location does not matter. A picture of a butterfly is
classified as such wherever the butterfly appears in the image. On the contrary, for
object detection, we will add elements to the convolutional stack to extract and refine
the location information and train the network to do so with maximum accuracy.

The simplest approach is to add something to the end of a convolutional backbone to
predict bounding boxes around detected objects. That’s the YOLO (You Only Look
Once) approach, and we will start there. However, a lot of important information is
also contained at intermediate levels in the convolutional backbone. To extract it, we

132 | Chapter 4: Object Detection and Image Segmentation

https://oreil.ly/sRrvU

will build more complex architectures called feature pyramid networks (FPNs) and
illustrate their use with RetinaNet.

In this section, we will be using the Arthropod Taxonomy Orders Object Detection
dataset (Arthropods for short), which is freely available on Kaggle.com. The dataset
contains seven categories—Coleoptera (beetles), Aranea (spiders), Hemiptera (true
bugs), Diptera (flies), Lepidoptera (butterflies), Hymenoptera (bees, wasps, and ants),
and Odonata (dragonflies)—as well as bounding boxes. Some examples are shown in
Figure 4-3.

Figure 4-3. Some examples from the Arthropods dataset for object detection.

Besides YOLO, this chapter will also address the RetinaNet and Mask R-CNN archi‐
tectures. Their implementations can be found in the TensorFlow Model Garden’s offi‐
cial vision repository. We will be using the new implementations located, at the time
of writing, in the “beta” folder of the repository.

Example code showing how to apply these detection models on a custom dataset such
as Arthropods can be found in 04_detect_segment on GitHub, in the folder corre‐
sponding to Chapter 4.

In addition to the TensorFlow Model Garden, there is also an excellent step-by-step
implementation of RetinaNet on the keras.io website.

YOLO
YOLO (you only look once) is the simplest object detection architecture. It is not the
most accurate, but it’s one of the fastest when it comes to prediction times. For that

Object Detection | 133

https://oreil.ly/sRrvU
https://oreil.ly/sRrvU
http://kaggle.com
https://oreil.ly/FYKgH
https://oreil.ly/FYKgH
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/tree/master/04_detect_segment
https://oreil.ly/LWG3c
https://oreil.ly/LWG3c
http://keras.io
https://arxiv.org/abs/1506.02640

reason, it is used in many real-time systems like security cameras. The architecture
can be based on any convolutional backbone from Chapter 3. Images are processed
through the convolutional stack as in the image classification case, but the classifica‐
tion head is replaced with an object detection and classification head.

More recent variations of the YOLO architecture exist (YOLOv2, YOLOv3,
YOLOv4), but we will not be covering them here. We will use YOLOv1 as our first
stepping-stone into object detection architectures, because it is the simplest one to
understand.

YOLO grid
YOLOv1 (hereafter referred to as “YOLO” for simplicity) divides a picture into a grid
of NxM cells—for example, 7x5 (Figure 4-4). For each cell, it tries to predict a bound‐
ing box for an object that would be centered in that cell. The predicted bounding box
can be larger than the cell from which it originates; the only constraint is that the cen‐
ter of the box is somewhere inside the cell.

What does it mean to predict a bounding box? Let’s take a look.

Figure 4-4. The YOLO grid. Each grid cell predicts a bounding box for an object whose
center is somewhere in that cell. Image from Arthropods dataset.

134 | Chapter 4: Object Detection and Image Segmentation

https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/2004.10934
https://oreil.ly/sRrvU

Object detection head
Predicting a bounding box amounts to predicting six numbers: the four coordinates
of the bounding box (in this case, the x and y coordinates of the center, and the width
and height), a confidence factor which tells us if an object has been detected or not,
and finally, the class of the object (for example, “butterfly”). The YOLO architecture
does this directly on the last feature map, as generated by the convolutional backbone
it is using.

In Figure 4-5, the x- and y-coordinate calculations use a hyperbolic tangent (tanh)
activation so that the coordinates fall in the [–1, 1] range. They will be the coordi‐
nates of the center of the detection box, relative to the center of the grid cell they
belong to.

Figure 4-5. A YOLO detection head predicts, for every grid cell, a bounding box (x, y, w,
h), the confidence C of there being an object in this location, and the class of the object.

Width and height (w, h) calculations use a sigmoid activation so as to fall in the [0, 1]
range. They will represent the size of the detection box relative to the entire image.
This allows detection boxes to be bigger than the grid cell they originate in. The con‐
fidence factor, C, is also in the [0, 1] range. Finally, a softmax activation is used to
predict the class of the detected object. The tanh and sigmoid functions are depicted
in Figure 4-6.

Object Detection | 135

Figure 4-6. The tanh and sigmoid activation functions. Tanh outputs values in the [–1,
1] range, while the sigmoid function outputs them in the [0, 1] range.

An interesting practical question is how to obtain a feature map of exactly the right
dimensions. In the example from Figure 4-4, it must contain exactly 7 * 5 * (5 + 7)
values. The 7 * 5 is because we chose a 7x5 YOLO grid. Then, for each grid cell, five
values are needed to predict a box (x, y, w, h, C), and seven additional values are
needed because, in this example, we want to classify arthropods into seven categories
(Coleoptera, Aranea, Hemiptera, Diptera, Lepidoptera, Hymenoptera, Odonata).

If you control the convolutional stack, you could try to tune it to get exactly 7 * 5 * 12
(420) outputs at the end. However, there is an easier way: flatten whatever feature
map the convolutional backbone is returning and feed it through a fully connected
layer with exactly that number of outputs. You can then reshape the 420 values into a
7x5x12 grid, and apply the appropriate activations as in Figure 4-5. The authors of the
YOLO paper argue that the fully connected layer actually adds to the accuracy of the
system.

Loss function
In object detection, as in any supervised learning setting, the correct answers are pro‐
vided in the training data: ground truth boxes and their classes. During training the
network predicts detection boxes, and it has to take into account errors in the boxes’
locations and dimensions as well as misclassification errors, and also penalize detec‐
tions of objects where there aren’t any. The first step, though, is to correctly pair
ground truth boxes with predicted boxes so that they can be compared. In the YOLO
architecture, if each grid cell predicts a single box, this is straightforward. A ground
truth box and a predicted box are paired if they are centered in the same grid cell (see
Figure 4-4 for easier understanding).

However in the YOLO architecture, the number of detection boxes per grid cell is a
parameter. It can be more than one. If you look back to Figure 4-5, you can see that
it’s easy enough for each grid cell to predict 10 or 15 (x, y, w, h, C) coordinates instead
of 5 and generate 2 or 3 detection boxes instead of 1. But pairing these predictions
with ground truth boxes requires more care. This is done by computing the intersec‐
tion over union (IOU; see Figure 4-7) between all ground truth boxes and all predic‐
ted boxes within a grid cell, and selecting the pairings where the IOU is the highest.

136 | Chapter 4: Object Detection and Image Segmentation

Figure 4-7. The IOU metric.

To summarize, ground truth boxes are assigned to grid cells by their centers and to
the prediction boxes within these grid cells by IOU. With the pairings in place, we
can now calculate the different parts of the loss:

Object presence loss
Each grid cell that has a ground truth box computes:

Lobj = 1 − C 2

Object absence loss
Each grid cell that does not have a ground truth box computes:

Lnoobj = 0 − C 2 = C2

Object classification loss
Each grid cell that has a ground truth box computes:

Lclass = cross−entropy p, p

where p ̂ is the vector of predicted class probabilities and p is the one-hot-encoded
target class.

Object Detection | 137

Bounding box loss
Each predicted box/ground truth box pairing contributes (predicted coordinate
marked with a hat, the other coordinate is the ground truth):

Lbox = x − x 2+ y − y 2 + w − w 2 + h − h
2

Notice here that the difference in box sizes is computed on the square roots of
the dimensions. This is to mitigate the effect of large boxes, which tend to over‐
whelm the loss.

Finally, all the loss contributions from the grid cells are added together, with weight‐
ing factors. A common problem in object detection losses is that small losses from
numerous cells with no object in them end up overpowering the loss from a lone cell
that predicts a useful box. Weighting different parts of the loss can alleviate this prob‐
lem. The authors of the paper used the following empirical weights:

λobj = 1 λnoobj = 0.5 λclass = 1 λbox = 5

YOLO limitations
The biggest limitation is that YOLO predicts a single class per grid cell and will not
work well if multiple objects of different kinds are present in the same cell.

The second limitation is the grid itself: a fixed grid resolution imposes strong spatial
constraints on what the model can do. YOLO models will typically not do well on col‐
lections of small objects, like a flock of birds, without careful tuning of the grid to the
dataset.

Also, YOLO tends to localize objects with relatively low precision. The main reason
for that is that it works on the last feature map from the convolutional stack, which is
typically the one with the lowest spatial resolution and contains only coarse location
signals.

Despite these limitations, the YOLO architecture is very simple to implement, espe‐
cially with a single detection box per grid cell, which makes it a good choice when
you want to experiment with your own code.

Note that it is not the case that every object is detected by looking at the information
in a single grid cell. In a sufficiently deep convolutional neural network (CNN), every
value in the last feature map, from which detection boxes are computed, depends on
all the pixels of the original image.

If a higher accuracy is needed, you can step up to the next level: RetinaNet. It incor‐
porates a number of ideas that improve upon the basic YOLO architecture, and is
regarded, at the time of writing, as the state of the art of so-called single-shot detectors.

138 | Chapter 4: Object Detection and Image Segmentation

RetinaNet
RetinaNet, as compared to YOLOv1, has several innovations in its architecture and in
the design of its losses. The neural network design includes feature pyramid networks
which combine information extracted at multiple scales. The detection head predicts
boxes starting from anchor boxes that change the bounding box representation to
make training easier. Finally, the loss innovations include the focal loss, a loss specifi‐
cally designed for detection problems, a smooth L1 loss for box regression, and non-
max suppression. Let’s look at each of these in turn.

Feature pyramid networks
When an image is processed by a CNN, the initial convolutional layers pick up low-
level details like edges and textures. Further layers combine them into features with
more and more semantic value. At the same time, pooling layers in the network
reduce the spatial resolution of the feature maps (see Figure 4-8).

Figure 4-8. Feature maps at various stages of a CNN. As information progresses through
the neural network, its spatial resolution decreases but its semantic content increases
from low-level details to high-level objects.

Object Detection | 139

https://arxiv.org/abs/1708.02002

The YOLO architecture only uses the last feature map for detection. It is able to cor‐
rectly identify objects, but its localization accuracy is limited. Another idea would be
to try and add a detection head at every stage. Unfortunately, in this approach, the
heads working from the early feature maps would localize objects rather well but
would have difficulty labeling them. At that early stage, the image has only gone
through a couple of convolutional layers, which is not enough to classify it. Higher-
level semantic information, like “this is a rose,” needs tens of convolutional layers to
emerge.

Still, one popular detection architecture, called the single-shot detector (SSD), is
based on this idea. The authors of the SSD paper made it work by connecting their
multiple detection heads to multiple feature maps, all located toward the end of the
convolutional stack.

What if we could combine all feature maps in a way that would surface both good
spatial information and good semantic information at all scales? This can be done
with a couple of additional layers forming a feature pyramid network. Figure 4-9
offers a schematic view of an FPN compared to the YOLO and SSD approaches, while
Figure 4-10 presents the detailed design.

Figure 4-9. Comparison of YOLO, SSD, and FPN architectures and where, in the convo‐
lutional stack, they connect their detection head(s).

140 | Chapter 4: Object Detection and Image Segmentation

https://arxiv.org/abs/1512.02325
https://arxiv.org/pdf/1612.03144.pdf

Figure 4-10. A feature pyramid network in detail. Feature maps are extracted from vari‐
ous stages of a convolutional backbone, and 1x1 convolutions squeeze every feature map
to the same number of channels. Upsampling (nearest neighbor) then makes their spatial
dimensions compatible so that they can be added up. The final 3x3 convolutions smooth
out upsampling artifacts. Typically no activation functions are used in the FPN layers.

Here is what is happening in the FPN in Figure 4-10: in the downward path (convolu‐
tional backbone), convolutional layers gradually refine the semantic information in
the feature maps, while pooling layers scale the feature maps down in their spatial
dimensions (the x and y dimensions of the image). In the upward path, feature maps
from the bottom layers containing good high-level semantic information get upsam‐
pled (using a simple nearest neighbor algorithm) so that they can be added, element-
wise, to feature maps higher up in the stack. 1x1 convolutions are used in the lateral
connections to bring all feature maps to the same channel depth and make the addi‐
tions possible. The FPN paper, for example, uses 256 channels everywhere. The
resulting feature maps now contain semantic information at all scales, which was the
initial goal. They are further processed through a 3x3 convolution, mostly to smooth
out the effects of the upsampling.

There are typically no nonlinearities in the FPN layers. The authors of the FPN paper
found them to have little impact.

A detection head can now take the feature maps at each resolution and produce box
detections and classifications. The detection head can itself have multiple designs,
which we will cover in the next two sections. It will, however, be shared across all the

Object Detection | 141

https://arxiv.org/pdf/1612.03144.pdf

feature maps at different scales. This is why it was important to bring all the feature
maps to the same channel depth.

The nice thing about the FPN design is that it is independent of the underlying con‐
volutional backbone. Any convolutional stack from Chapter 3 will do, as long as you
can extract intermediate feature maps from it—typically four to six, at various scales.
You can even use a pretrained backbone. Typical choices are ResNet or EfficientNet,
and pretrained versions of them can be found in TensorFlow Hub.

There are multiple levels in a convolutional stack where features can be extracted and
fed into the FPN. For each desired scale, many layers output feature maps of the same
dimensions (see Figure 3-26 in the previous chapter). The best choice is the last fea‐
ture map of a given block of layers outputting similarly sized features, just before a
pooling layer halves the resolution again. This feature map is likely to contain the
strongest semantic features.

It is also possible to extend an existing pretrained backbone with additional pooling
and convolutional layers, for the sole purpose of feeding an FPN. These additional
feature maps are typically small and therefore fast to process. They correspond to the
lowest spatial resolution (see Figure 4-8) and can therefore improve the detection of
large objects. The SSD paper actually used this trick, and RetinaNet does as well, as
you will see in the architecture diagram later (Figure 4-15).

Anchor boxes
In the YOLO architecture, detection boxes are computed as deltas relative to a set of
base boxes (Δx = x – x0, Δy = y – y0, Δw = w – w0, Δh = h – h0 are often referred to as
“deltas” relative to some base box x0, y0, w0, h0 because of the Greek letter Δ, usually
chosen to represent a ”difference”). In that case, the base boxes were a simple grid
overlaid on the image (see Figure 4-4).

More recent architectures have expanded on this idea by explicitly defining a set of
so-called “anchor boxes” with various aspect ratios and scales (examples in
Figure 4-11). Predictions are again small variations of the size and position of the
anchors. The goal is to help the neural network predict small values around zero
rather than large ones. Indeed, neural networks are able to solve complex nonlinear
problems because they use nonlinear activation functions between their layers. How‐
ever, most activation functions (sigmoid, ReLU) exhibit a nonlinear behavior around
zero only. That’s why neural networks are at their best when they predict small values
around zero, and it’s why predicting detections as small deltas relative to anchor
boxes is helpful. Of course, this only works if there are enough anchor boxes of vari‐
ous sizes and aspect ratios that any object detection box can be paired (by max IOU)
with an anchor box of closely matching position and dimensions.

142 | Chapter 4: Object Detection and Image Segmentation

https://tfhub.dev/
https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1708.02002

Figure 4-11. Examples of anchor boxes of various sizes and aspect ratios used to predict
detection boxes. Image from Arthropods dataset.

We will describe in detail the approach taken in the RetinaNet architecture, as an
example. RetinaNet uses nine different anchor types with:

• Three different aspect ratios: 2:1, 1:1, 1:2
• Three different sizes: 20, 2⅓, 2⅔ (≃ 1, 1.3, 1.6)

They are depicted in Figure 4-12.

Figure 4-12. The nine different anchor types used in RetinaNet. Three aspect ratios and
three different sizes.

Object Detection | 143

https://oreil.ly/sRrvU

Anchors, along with the feature maps computed by an FPN, are the inputs from
which detections are computed in RetinaNet. The sequence of operations is as
follows:

• The FPN reduces the input image into five feature maps (see Figure 4-10).
• Each feature map is used to predict bounding boxes relative to anchors at regu‐

larly spaced locations throughout the image. For example, a feature map of size
4x6 with 256 channels will use 24 (4 * 6) anchor locations in the image (see
Figure 4-13).

• The detection head uses multiple convolutional layers to convert the 256-channel
feature map into exactly 9 * 4 = 36 channels, yielding 9 detection boxes per loca‐
tion. The four numbers per detection box represent the deltas relative to the cen‐
ter (x, y), the width, and the height of the anchor. The precise sequence of the
layers that compute detections from the feature maps is shown in Figure 4-15.

• Finally, each feature map from the FPN, since it corresponds to a different scale
in the image, will use different scales of anchor boxes.

Figure 4-13. Conceptual view of the RetinaNet detection head. Each spatial location in a
feature map corresponds to a series of anchors in the image, all centered at the same
point. For clarity, only three such anchors are shown in the illustration, but RetinaNet
would have nine at every location.

144 | Chapter 4: Object Detection and Image Segmentation

The anchors themselves are spaced regularly across the input image and sized appro‐
priately for each level of the feature pyramid. For example in RetinaNet, the following
parameters are used:

• The feature pyramid has five levels corresponding to scales P3, P4, P5, P6, and P7
in the backbone. Scale Pn represents a feature map 2n times smaller in width and
height than the input image (see the complete RetinaNet view in Figure 4-15).

• Anchor base sizes are 32x32, 64x64, 128x128, 256x256, 512x512 pixels, at each
feature pyramid level respectively (= 4 * 2n, if n is the scale level).

• Anchor boxes are considered for every spatial location of every feature map in
the feature pyramid, which means that the boxes are spaced every 8, 16, 32, 64, or
128 pixels across the input image at each feature pyramid level, respectively (= 2n,
if n is the scale level).

The smallest anchor box is therefore 32x32 pixels while the largest one is 812x1,624
pixels.

The anchor box settings must be tuned for every dataset so that
they correspond to the detection box characteristics actually found
in the training data. This is typically done by resizing input images
rather than changing the anchor box generation parameters. How‐
ever, on specific datasets with many small detections, or, on the
contrary, mostly large objects, it can be necessary to tune the
anchor box generation parameters directly.

The last step is to compute a detection loss. For that, predicted detection boxes must
be paired with ground truth boxes so that detection errors can be evaluated.

The assignment of ground truth boxes to anchor boxes is based on the IOU metric
computed between each set of boxes in one input image. All pairwise IOUs are com‐
puted and are arranged in a matrix with N rows and M columns, N being the number
of ground truth boxes and M the number of anchor boxes. The matrix is then ana‐
lyzed by columns (see Figure 4-14):

• An anchor is assigned to the ground truth box that has the largest IOU in its col‐
umn, provided it is more than 0.5.

• An anchor box that has no IOU greater than 0.4 in its column is assigned to
detect nothing (i.e., the background of the image).

• Any unassigned anchor at this point is marked to be ignored during training.
Those are anchors with IOUs in the intermediate regions between 0.4 and 0.5.

Now that every ground truth box is paired with exactly one anchor box, it is possible
to compute box predictions, classifications, and the corresponding losses.

Object Detection | 145

Figure 4-14. The pairwise IOU metric is computed between all ground truth boxes and
all anchor boxes to determine their pairings. Anchors without a meaningful intersection
with a ground truth box are deemed “background” and trained to detect nothing.

Architecture
The detection and classification heads transform the feature maps from the FPN into
class predictions and bounding box deltas. Feature maps are three-dimensional. Two
of their dimensions correspond to the x and y dimensions of the image and are called
spatial dimensions; the third dimension is their number of channels.

In RetinaNet, for every spatial location in every feature map, the following parame‐
ters are predicted (with K = the number of classes and B = the number of anchor box
types, so in our case B=9):

• The class prediction head predicts B * K probabilities, one set of probabilities for
every anchor type. This in effect predicts one class for every anchor.

• The detection head predicts B * 4 = 36 box deltas Δx, Δy, Δw, Δh. Bounding
boxes are still parameterized by their center (x, y) as well as their width and
height (w, h).

Both heads share a similar design, although with different weights, and the weights
are shared across all scales in the feature pyramid.

146 | Chapter 4: Object Detection and Image Segmentation

Figure 4-15 represents a complete view of the RetinaNet architecture. It uses a
ResNet50 (or other) backbone. The FPN extracts features from backbone levels P3
though P7, where Pn is the level where the feature map is reduced by a factor of 2n in
its width and height compared to the original image. The FPN part is described in
detail in Figure 4-10. Every feature map from the FPN is fed through both a classifi‐
cation and a box regression head.

Figure 4-15. Complete view of the RetinaNet architecture. K is the number of target
classes. B is the number of anchor boxes at each position, which is nine in RetinaNet.

The RetinaNet FPN taps into the three last scale levels available from the backbone.
The backbone is extended with 2 additional layers using a stride of 2 to provide 2
additional scale levels to the FPN. This architectural choice allows RetinaNet to avoid
processing very large feature maps, which would be time-consuming. The addition of
the last two coarse scale levels also improves the detection of very large objects.

The classification and box regression heads themselves are made from a simple
sequence of 3x3 convolutions. The classification head is designed to predict K binary

Object Detection | 147

classifications for every anchor, which is why it ends on a sigmoid activation. It looks
like we are allowing multiple labels to be predicted for every anchor, but actually the
goal is to allow the classification head to output all zeros, which will represent the
“background class” corresponding to no detections. A more typical activation for
classification would be softmax, but the softmax function cannot output all zeros.

The box regression ends with no activation function. It is computing the differences
between the center coordinates (x, y), width, and height of the anchor box and detec‐
tion box. Some care must be taken to allow the regressor to work in the [–1, 1] range
at all levels in the feature pyramid. The following formulas are used to achieve that:

• Xpixels = X × U × WA + XA

• Ypixels = Y × U × HA + YA

• Wpixels = WA × eW × V

• Hpixels = HA × eH × V

In these formulas, XA, YA, WA, and HA are the coordinates of an anchor box (center
coordinates, width, height), while X, Y, W, and H are the predicted coordinates rela‐
tive to the anchor box (deltas). Xpixels, Ypixels, Wpixels, and Hpixels are the actual coordi‐
nates, in pixels, of the predicted box (center and size). U and V are modulating
factors that correspond to the expected variance of the deltas relative to the anchor
box. Typical values are U=0.1 for coordinates, and V=0.2 for sizes. You can verify that
values in the [–1, 1] range for predictions result in predicted boxes that fall within
±10% of the position of the anchor and within ±20% of its size.

Focal loss (for classification)
How many anchor boxes are considered for one input image? Looking back at
Figure 4-15, with an example input image of 640x960 pixels, the five different feature
maps in the feature pyramid represent 80 * 120 + 40 * 60 + 20 * 30+ 10 * 15 + 5 * 7 =
12,785 locations in the input image. With 9 anchor boxes per location, that’s slightly
over 100K anchor boxes.

This means that 100K predicted boxes will be generated for every input image. In
comparison, there are 0 to 20 ground truth boxes per image in a typical application.
The problem this creates in detection models is that the loss corresponding to back‐
ground boxes (boxes assigned to detect nothing) can overwhelm the loss correspond‐
ing to useful detections in the total loss. This happens even if background detections
are already well trained and produce a small loss. This small value multiplied by 100K
can still be orders of magnitude larger than the detection loss for actual detections.
The end result is a model that cannot be trained.

148 | Chapter 4: Object Detection and Image Segmentation

The RetinaNet paper suggested an elegant solution to this problem: the authors
tweaked the loss function to produce much smaller values on empty backgrounds.
They call this the focal loss. Here are the details.

We have already seen that RetinaNet uses a sigmoid activation to generate class prob‐
abilities. The output is a series of binary classifications, one for every class. A proba‐
bility of 0 for every class means “background”; i.e., nothing to detect here. The
classification loss used is the binary cross-entropy. For every class, it is computed
from the actual binary class label y (0 or 1) and the predicted probability for the class
p using the following formula:

CE y, p = − y ⋅ log p − 1 − y ⋅ log 1 − p

The focal loss is the same formula with a small modification:

FL y, p = − y ⋅ 1 − p γ ⋅ log p − 1 − y ⋅ pγ ⋅ log 1 − p

For γ=0 this is exactly the binary cross-entropy, but for higher values of γ the behav‐
ior is slightly different. To simplify, let’s only consider the case of background boxes
that do not belong to any class (i.e., where y=0 for all classes):

FLbkg p = − pγ ⋅ log 1 − p

And let’s plot the values of the focal loss for various values of p and γ (Figure 4-16).

As you can see in the figure, with γ=2, which was found to be an adequate value, the
focal loss is much smaller than the regular cross-entropy loss, especially for small val‐
ues of p. For background boxes, where there is nothing to detect, the network will
quickly learn to produce small class probabilities p across all classes. With the cross-
entropy loss, these boxes, even well classified as “background” with p=0.1 for exam‐
ple, would still be contributing a significant amount: CE(0.1) = 0.05. The focal loss is
100 times less: FL(0.1) = 0.0005.

With the focal loss, it becomes possible to add the losses from all anchor boxes—all
100K of them—and not worry about the total loss being overwhelmed by thousands
of small losses from easy-to-classify background boxes.

Object Detection | 149

https://arxiv.org/abs/1708.02002

Figure 4-16. Focal loss for various values of γ. For γ=0, this is the cross-entropy loss. For
higher values of γ, the focal loss greatly de-emphasizes easy-to-classify background
regions where p is close to 0 for every class.

Smooth L1 loss (for box regression)
Detection boxes are computed by a regression. For regressions, the two most com‐
mon losses are L1 and L2, also called absolute loss and squared loss. Their formulas are
(computed between a target value a and the predicted value â):

L1 a, a = a − a

L2 a, a = a − a 2

The problem with the L1 loss is that its gradient is the same everywhere, which is not
great for learning. The L2 loss is therefore preferred for regressions—but it suffers
from a different problem. In the L2 loss, differences between the predicted and target
values are squared, which means that the loss tends to get very large as the prediction
and the target grow apart. This becomes problematic if you have some outliers, like a
couple of bad points in the data (for example, a target box with the wrong size). The
result will be that the network will try to fit the bad data point at the expense of every‐
thing else, which is not good either.

A good compromise between the two is the Huber loss, or smooth L1 loss (see
Figure 4-17). It behaves like the L2 loss for small values and like the L1 loss for large
values. Close to zero, it has the nice property that its gradient is larger when the

150 | Chapter 4: Object Detection and Image Segmentation

differences are larger, and therefore it pushes the network to learn more where it is
making the biggest mistakes. For large values, it becomes linear instead of quadratic
and avoids being thrown off by a couple of bad target values. Its formula is:

Lδ a − a = 1
2 a − a 2 for a − a ≤ δ

Lδ = δ a − a − 1
2δ otherwise

Where δ is an adjustable parameter. δ is the value around which the behavior
switches from quadratic to linear. Another formula can be used to avoid the piecewise
definition:

Lδ a − a = δ2 1 + a − a
δ

2
− 1

This alternate form does not give the exact same values as the standard Huber loss,
but it has the same behavior: quadratic for small values, linear for large ones. In prac‐
tice, either form will work well in RetinaNet, with δ=1.

Figure 4-17. L1, L2, and Huber losses for regression. The desirable behaviors are quad‐
ratic for small values and linear for large ones. The Huber loss has both.

Object Detection | 151

Non-maximum suppression
A detection network using numerous anchor boxes, such as RetinaNet, usually pro‐
duces multiple candidate detections for every target box. We need an algorithm to
select a single detection box for every detected object.

Non-maximum suppression (NMS) takes box overlap (IOU) and class confidence into
account to select the most representative box for a given object (Figure 4-18).

Figure 4-18. On the left: multiple detections for the same object. On the right: a single
box remaining after non-max suppression. Image from Arthropods dataset.

The algorithm uses a simple “greedy” approach: for every class, it considers the over‐
lap (IOU) between all the predicted boxes. If two boxes overlap more than a given
value A (IOU > A), it keeps the one with the highest class confidence. In Python-like
pseudocode, for one given class:

def NMS(boxes, class_confidence):
 result_boxes = []
 for b1 in boxes:
 discard = False
 for b2 in boxes:
 if IOU(b1, b2) > A:
 if class_confidence[b2] > class_confidence[b1]:
 discard = True
 if not discard:
 result_boxes.append(b1)
 return result_boxes

NMS works quite well in practice but it can have some unwanted side effects. Notice
that the algorithm relies on a single threshold value (A). Changing this value changes
the box filtering, especially for adjacent or overlapping objects in the original image.
Take a look at the example in Figure 4-19. If the threshold is set at A=0.4, then the
two boxes detected in the figure will be regarded as “overlapping” for the same class

152 | Chapter 4: Object Detection and Image Segmentation

https://oreil.ly/sRrvU

and the one with the lowest class confidence (the one on the left) will be discarded.
That is obviously wrong. There are two butterflies to detect in this image and, before
NMS, both were detected with a high confidence.

Figure 4-19. Objects close to each other create a problem for the non-max suppression
algorithm. If the NMS threshold is 0.4, the box detected on the left will be discarded,
which is wrong. Image from Arthropods dataset.

Pushing the threshold value higher will help, but if it’s too high the algorithm will fail
to merge boxes that correspond to the same object. The usual value for this threshold
is A=0.5, but it still causes objects that are close together to be detected as one.

A slight variation on the basic NMS algorithm is called Soft-NMS. Instead of remov‐
ing non-maximum overlapping boxes altogether, it lowers their confidence score by
the factor:

exp − IOU2

σ

with σ being an adjustment factor that tunes the strength of the Soft-NMS algorithm.
A typical value is σ=0.5. The algorithm is applied by considering the box with the
highest confidence score for a given class (the max box), and decreasing the scores for
all other boxes by this factor. The max box is then put aside and the operation is
repeated on the remaining boxes until none remain.

For nonoverlapping boxes (IOU=0), this factor is 1. The confidence factors of boxes
that do not overlap the max box are thus not affected. The factor gradually, but con‐
tinuously, decreases as boxes overlap more with the max box. Highly overlapping
boxes (IOU=0.9) get their confidence factor decreased by a lot (×0.2), which is the

Object Detection | 153

https://oreil.ly/sRrvU
https://arxiv.org/abs/1704.04503

expected behavior because they are redundant with the max box and we want to get
rid of them.

Since the Soft-NMS algorithm does not discard any boxes, a second threshold, based
on the class confidence, is used to actually prune the list of detections.

The effect of Soft-NMS on the example from Figure 4-19 is shown in Figure 4-20.

Figure 4-20. Objects close to each other as handled by Soft-NMS. The detection box on
the left is not deleted, but its confidence factor is reduced from 78% to 55%. Image from
Arthropods dataset.

In TensorFlow, both styles of non-max suppression are available.
Standard NMS is called tf.image.non_max_suppression, while
Soft-NMS is called tf.image.non_max_suppression_with_scores.

Other considerations
In order to reduce the amount of data needed, it is customary to use a pretrained
backbone.

Classification datasets are much easier to put together than object detection datasets.
That’s why readily available classification datasets are typically much larger than
object detection datasets. Using a pretrained backbone from a classifier allows you to
combine a generic large classification dataset with a task-specific object detection
dataset and obtain a better object detector.

The pretraining is done on a classification task. Then the classification head is
removed and the FPN and detection heads are added, initialized at random. The
actual object detection training is performed with all weights trainable, which means

154 | Chapter 4: Object Detection and Image Segmentation

https://oreil.ly/sRrvU

that the backbone will be fine-tuned while the FPN and detection head train from
scratch.

Since detection datasets tend to be smaller, data augmentation (which we will cover in
more detail in Chapter 6) plays an important part in training. The basic data augmen‐
tation technique is to cut fixed-sized crops out of the training images at random, and
at random zoom factors (see Figure 4-21). With target bounding boxes adjusted
appropriately, this allows you to train the network with the same object at different
locations in the image, at different scales and with different parts of the background
visible.

Figure 4-21. Data augmentation for detection training. Fixed-size images are cut at ran‐
dom from each training image, potentially at different zoom factors. Target box coordi‐
nates are recomputed relative to the new boundaries. This provides more training images
and more object locations from the same initial training data. Image from Arthropods
dataset.

A practical advantage of this technique is that it also provides fixed-sized training
images to the neural network. You can train directly on a training dataset made up of

Object Detection | 155

https://oreil.ly/sRrvU
https://oreil.ly/sRrvU

images of different sizes and aspect ratios. The data augmentation takes care of get‐
ting all the images to the same size.

Finally, what drives training and hyperparameter tuning are metrics. Object detection
problems have been the subject of multiple large-scale contests where detection met‐
rics have been carefully standardized; this topic is covered in detail in “Metrics for
Object Detection” on page 297 in Chapter 8.

Now that we have looked at object detection, let’s turn our attention to another class
of problems: image segmentation.

Segmentation
Object detection finds bounding boxes around objects and classifies them. Instance
segmentation adds, for every detected object, a pixel mask that gives the shape of the
object. Semantic segmentation, on the other hand, does not detect specific instances of
objects but classifies every pixel of the image into a category like “road,” “sky,” or
“people.”

Mask R-CNN and Instance Segmentation
YOLO and RetinaNet, which we covered in the previous section, are examples of
single-shot detectors. An image traverses them only once to produce detections.
Another approach is to use a first neural network to suggest potential locations for
objects to be detected, then use a second network to classify and fine-tune the loca‐
tions of these proposals. These architectures are called region proposal networks
(RPNs).

They tend to be more complex and therefore slower than single-shot detectors, but
are also more accurate. There is a long list of RPN variants, all based on the original
“regions with CNN features” idea: R-CNN, Fast R-CNN, Faster R-CNN, and more.
The state of the art, at the time of writing, is Mask R-CNN, and that’s the architecture
we are going to dive into next.

The main reason why it is important to be aware of architectures like Mask R-CNN is
not their marginally superior accuracy, but the fact that they can be extended to per‐
form instance segmentation tasks. In addition to predicting a bounding box around
detected objects, they can be trained to predict their outline—i.e., find every pixel
belonging to each detected object (Figure 4-22). Of course, training them remains a
supervised training task and the training data will have to contain ground truth seg‐
mentation masks for all objects. Unfortunately, masks are more time-consuming to
generate by hand than bounding boxes and therefore instance segmentation datasets
are harder to find than simple object detection datasets.

156 | Chapter 4: Object Detection and Image Segmentation

https://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1703.06870

Figure 4-22. Instance segmentation involves detecting objects and finding all the pixels
that belong to each object. The objects in the images are shaded with a pixel mask. Image
from Arthropods dataset.

Let’s look at RPNs in detail, first analyzing how they perform classic object detection,
then how to extend them for instance segmentation.

Region proposal networks
An RPN is a simplified single-shot detection network that only cares about two
classes: objects and background. An “object” is anything labeled as such in the dataset
(any class), and “background” is the designated class for a box that does not contain
an object.

An RPN can use an architecture similar to the RetinaNet setup we looked at earlier: a
convolutional backbone, a feature pyramid network, a set of anchor boxes, and two
heads. One head is for predicting boxes and the other is for classifying them as object
or background (we are not predicting segmentation masks yet).

The RPN has its own loss function, computed from a slightly modified training data‐
set: the class of any ground truth object is replaced with a single class “object.” The
loss function used for boxes is, as in RetinaNet, the Huber loss. For classes, since this
is a binary classification, binary cross-entropy is the best choice.

Boxes predicted by the RPN then undergo non-max suppression. The top N boxes,
sorted by their probability of being an “object,” are regarded as box proposals or
regions of interest (ROIs) for the next stage. N is usually around one thousand, but if
fast inference is important, it can be as little as 50. ROIs can also be filtered by a mini‐
mal “object” score or a minimal size. In the TensorFlow Model Garden implementa‐
tion, these thresholds are available even if they are set to zero by default. Bad ROIs

Segmentation | 157

https://oreil.ly/sRrvU

can still be classified as “background” and rejected by the next stage, so letting them
through at the RPN level is not a big problem.

One important practical consideration is that the RPN can be simple and fast if
needed (see the example in Figure 4-23). It can use the output of the backbone
directly, instead of using an FPN, and its classification and detection heads can use
fewer convolutional layers. The goal is only to compute approximate ROIs around
likely objects. They will be refined and classified in the next step.

Figure 4-23. A simple region proposal network. The output from the convolutional back‐
bone is fed through a two-class classification head (object or background) and a box
regression head. B is the number of anchor boxes per location (typically three). An FPN
can be used as well.

For example, the Mask R-CNN implementation in the TensorFlow Model Garden
uses an FPN in its RPN but uses only three anchors per location, with aspect ratios of
0.5, 1.0, and 2.0, instead of the nine anchors per location used by RetinaNet.

R-CNN
We now have a set of proposed regions of interest. What next?

Conceptually, the R-CNN idea (Figure 4-24) is to crop the images along the ROIs and
run the cropped images through the backbone again, this time with a full classifica‐
tion head attached to classify the objects (in our example, into “butterfly,” “spider,”
etc.).

158 | Chapter 4: Object Detection and Image Segmentation

Figure 4-24. Conceptual view of an R-CNN. Images go through the backbone twice: the
first time to generate regions of interest and the second time to classify the contents of
these ROIs. Image from Arthropods dataset.

In practice, however, this is too slow. The RPN can generate somewhere in the region
of 50 to 2,000 proposed ROIs, and running them all through the backbone again
would be a lot of work. Instead of cropping the image, the smarter thing to do is to
crop the feature map directly, then run prediction heads on the result, as depicted in
Figure 4-25.

Segmentation | 159

https://oreil.ly/sRrvU

Figure 4-25. A faster R-CNN or Mask R-CNN design. As previously, the backbone gener‐
ates a feature map and the RPN predicts regions of interest from it (only the result is
shown). Then the ROIs are mapped back onto the feature map, and features are extrac‐
ted and sent to the prediction heads for classification and more. Image from Arthropods
dataset.

This is slightly more complex when an FPN is used. The feature extraction is still per‐
formed on a given feature map, but in a FPN there are several feature maps to choose
from. A ROI therefore must first be assigned to the most relevant FPN level. The
assignment is usually done using this formula:

n = f loor n0 + log 2 wh/224

where w and h are the width and height of the ROI, and n0 is the FPN level where
typical anchor box sizes are closest to 224. Here, floor stands for rounding down to
the most negative number. For example, here are the typical Mask R-CNN settings:

• Five FPN levels, P2, P3, P4, P5, and P6 (reminder: level Pn represents a feature map
2n times smaller in width and height than the input image)

• Anchor box sizes of 32x32, 64x64, 128x128, 256x256, and 512x512 on their
respective levels (same as in RetinaNet)

• n0 = 4

160 | Chapter 4: Object Detection and Image Segmentation

https://oreil.ly/sRrvU
https://oreil.ly/sRrvU

With these settings, we can verify that (for example) an ROI of 80x160 pixels would
get assigned to level P3 and an ROI of 200x300 to level P4, which makes sense.

ROI resampling (ROI alignment)
Special care is needed when extracting the feature maps corresponding to the ROIs.
The feature maps must be extracted and resampled correctly. The Mask R-CNN
paper’s authors discovered that any rounding error made during this process
adversely affects detection performance. They called their precise resampling method
ROI alignment.

For example, let’s take an ROI of 200x300 pixels. It would be assigned to FPN level P4,
where its size relative to the P4 feature map becomes (200 / 24, 300 / 24) = (12.5,
18.75). These coordinates should not be rounded. The same applies to its position.

The features contained in this 12.5x18.75 region of the P4 feature map must then be
sampled and aggregated (using either max pooling or average pooling) into a new
feature map, typically of size 7x7. This is a well-known mathematical operation called
bilinear interpolation, and we won’t dwell on it here. The important point to remem‐
ber is that cutting corners here degrades performance.

Class and bounding box predictions
The rest of the model is pretty standard. The extracted features go through multiple
prediction heads in parallel—in this case:

• A classification head to assign a class to each object suggested by the RPN, or
classify it as background

• A box refinement head that further adjusts the bounding box

To compute detection and classification losses, the same target box assignment algo‐
rithm is used as in RetinaNet, described in the previous section. The box loss is also
the same (Huber loss). The classification head uses a softmax activation with a special
class added for “background.” In RetinaNet it was a series of binary classifications.
Both work, and this implementation detail is not important. The total training loss is
the sum of the final box and classification losses as well as the box and classification
losses from the RPN.

The exact design of the class and detection heads is given later, in Figure 4-30. They
are also very similar to what was used in RetinaNet: a straight sequence of layers,
shared between all levels of the FPN.

Mask R-CNN adds a third prediction head for classifying individual pixels of objects.
The result is a pixel mask depicting the silhouette of the object (see Figure 4-19). It
can be used if the training dataset contains corresponding target masks. Before we
explain how it works, however, we need to introduce a new kind of convolution, one

Segmentation | 161

capable of creating pictures rather than filtering and distilling them: transposed
convolutions.

Transposed convolutions
Transposed convolutions, sometimes also called deconvolutions, perform a learnable
upsampling operation. Regular upsampling algorithms like nearest neighbor upsam‐
pling or bilinear interpolation are fixed operations. Transposed convolutions, on the
other hand, involve learnable weights.

The name “transposed convolution” comes from the fact that in the
matrix representation of a convolutional layer, which we are not
covering in this book, the transposed convolution is performed
using the same convolutional matrix as an ordinary convolution,
but transposed.

The transposed convolution pictured in Figure 4-26 has a single input and a single
output channel. The best way to understand what it does is to imagine that it is paint‐
ing with a brush on an output canvas. The brush is a 3x3 filter. Every value of the
input image is projected through the filter on the output. Mathematically, every ele‐
ment of the 3x3 filter is multiplied by the input value and the result is added to what‐
ever is already on the output canvas. The operation is then repeated at the next
position: in the input we move by 1, and in the output we move with a configurable
stride (2 in this example). Any stride larger than 1 results in an upsampling opera‐
tion. The most frequent settings are stride 2 with a 2x2 filter or stride 3 with a 3x3
filter.

If the input is a feature map with multiple channels, the same operation is applied to
each channel independently, with a new filter each time; then all the outputs are
added element by element, resulting in a single output channel.

It is of course possible to repeat this operation multiple times on the same feature
map, with a new set of filters each time, which results in a feature map with multiple
channels.

In the end, for a multichannel input and a multichannel output, the weights matrix of
a transposed convolution will have the shape shown in Figure 4-27. This is, by the
way, the same shape as a regular convolutional layer.

162 | Chapter 4: Object Detection and Image Segmentation

Figure 4-26. Transposed convolution. Each pixel of the original image (top) multiplies a
3x3 filter, and the result is added to the output. In a transposed convolution of stride 2,
the output window moves by a step of 2 for every input pixel, creating a larger image
(shifted output window pictured with a dashed outline).

Figure 4-27. The weights matrix of a transposed convolutional layer, sometimes also
called a “deconvolution.” At the bottom is the schematic notation of deconvolutional lay‐
ers that will be used for the models in this chapter.

Segmentation | 163

Up-Convolution
Transposed convolutions are widely used in neural networks that generate images:
autoencoders, generative adversarial networks (GANs), and so on. However, they
have also been criticized for introducing “checkerboard” artifacts into the generated
images (Odena et al., 2016), especially when their stride and filter size are not multi‐
ples of each other (Figure 4-28).

Figure 4-28. Transposed convolutions versus up-convolutions when used in a GAN.
When transposed convolutions are used, an unwanted checkerboard pattern can appear
(top row). This does not happen with up-convolutions. Image from Odena et al., 2016.

Odena et al. suggest using a simple nearest neighbour resampling followed by a regu‐
lar convolution, a combination called “up-convolution” (Figure 4-29), instead of
transposed convolutions. Interestingly, as you may recall from “Feature pyramid net‐
works” on page 139, this is exactly how upsampling was handled there.

Figure 4-29. This is also a learnable upsampling operation. An “up-convolution” is a sim‐
ple nearest neighbor upsampling operation followed by an ordinary convolutional layer.

164 | Chapter 4: Object Detection and Image Segmentation

https://oreil.ly/39Dud
https://oreil.ly/39Dud

Instance segmentation
Let’s get back to Mask R-CNN, and its third prediction head that classifies individual
pixels of objects. The output is a pixel mask outlining the silhouette of the object (see
Figure 4-22).

Mask R-CNN and other RPNs work on a single ROI at a time, with a fairly high prob‐
ability that this ROI is actually interesting, so they can do more work per ROI and
with a higher precision. Instance segmentation is one such task.

The instance segmentation head uses transposed convolution layers to upsample the
feature map into a black-and-white image that is trained to match the silhouette of
the detected object.

Figure 4-30 shows the complete Mask R-CNN architecture.

Figure 4-30. The Mask R-CNN architecture. N is the number of ROIs proposed by the
RPN, and K is the number of classes; “deconv” denotes a transposed convolutional layer,
which upsamples the feature maps to predict an object mask.

Notice that the mask head produces one mask per class. This seems to be redundant
since there is a separate classification head. Why predict K masks for one object? In
reality, this design choice increases the segmentation accuracy because it allows the
segmentation head to learn class-specific hints about objects.

Segmentation | 165

Another implementation detail is that the resampling and alignment of the feature
maps to the ROIs is actually performed twice: once with a 7x7x256 output for the
classification and detection head, and again with different settings (resampling to
14x14x256) specifically for the mask head to give it more detail to work with.

The segmentation loss is a simple pixel-by-pixel binary cross-entropy loss, applied
once the predicted mask has been rescaled and upsampled to the same coordinates as
the ground truth mask. Note that only the mask predicted for the predicted class is
taken into account in the loss calculation. Other masks computed for the wrong
classes are ignored.

We now have a complete picture of how Mask R-CNN works. One thing to notice is
that with all the improvements added to the R-CNN family of detectors, Mask R-
CNN is now a “two-pass” detector in name only. The input image effectively goes
through the system only once. The architecture is still slower than RetinaNet but ach‐
ieves a slightly higher detection accuracy and adds instance segmentation.

An extension of RetinaNet with an added mask head exists (RetinaMask), but it does
not outperform Mask R-CNN. Interestingly, the paper notes that adding the mask
head and associated loss actually improves the accuracy of bounding box detections
(the other head). A similar effect might explain some of the improved accuracy of
Mask R-CNN too.

One limitation of the Mask R-CNN approach is that the predicted object masks are
fairly low resolution: 28x28 pixels. The similar but not exactly equivalent problem of
semantic segmentation has been solved with high-resolution approaches. We’ll
explore this in the next section.

U-Net and Semantic Segmentation
In semantic segmentation, the goal is to classify every pixel of the image into global
classes like “road,” “sky,” “vegetation,” or “people” (see Figure 4-31). Individual instan‐
ces of objects, like individual people, are not separated. All “people” pixels across the
entire image are part of the same “segment.”

166 | Chapter 4: Object Detection and Image Segmentation

https://arxiv.org/abs/1901.03353

Figure 4-31. In semantic image segmentation, every pixel in the image is assigned a cate‐
gory (like “road,” “sky,” “vegetation,” or “building”). Notice that “people,” for example, is a
single class across the whole image. Objects are not individualized. Image from City‐
scapes.

For semantic image segmentation, a simple and quite often sufficient approach is
called U-Net. The U-Net is a convolutional network architecture that was designed
for biomedical image segmentation (see Figure 4-32) and won a cell tracking compe‐
tition in 2015.

Figure 4-32. The U-Net architecture was designed to segment biomedical images such as
these microscopy cell images. Images from Ronneberger et al., 2015.

The U-Net architecture is represented in Figure 4-33. A U-Net consists of an encoder
which downsamples an image to an encoding (the lefthand side of architecture), and
a mirrored decoder which upsamples the encoding back to the desired mask (the
righthand side of the architecture). The decoder blocks have a number of skip con‐
nections (depicted by the horizontal arrows in the center) that directly connect from
the encoder blocks. These skip connections copy features at a specific resolution and
concatenate them channel-wise with specific feature maps in the decoder. This brings
information at various levels of semantic granularity from the encoder directly into
the decoder. (Note: cropping may be necessary on the skip connections because of
slight size misalignments of the feature maps in corresponding levels of the encoder
and decoder. Indeed, U-Net uses all convolutions without padding, which means that
border pixels are lost at each layer. This design choice is not fundamental though, and
padding can be used as well.)

Segmentation | 167

https://www.cityscapes-dataset.com
https://www.cityscapes-dataset.com
https://oreil.ly/yrwBW
https://oreil.ly/yrwBW

Figure 4-33. The U-Net architecture consists of mirrored encoder and decoder blocks that
take on a U shape when depicted as shown here. Skip connections concatenate feature
maps along the depth axis (channels). K is the target number of classes.

Images and labels
To illustrate U-Net image segmentation we’ll use the Oxford Pets dataset, where each
of the input images contains a label mask as shown in Figure 4-34. The label is an
image in which pixels are assigned one of three integer values depending on whether
they are background, the object outline, or the object interior.

168 | Chapter 4: Object Detection and Image Segmentation

https://oreil.ly/GNyKx

Figure 4-34. Training images (top row) and labels (bottom row) from the Oxford Pets
dataset.

We’ll treat these three pixel values as the index of class labels and train the network to
carry out multiclass classification:

model = ...
model.compile(optimizer='adam',
 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
 metrics=['accuracy'])
model.fit(...)

The complete code is available in 04b_unet_segmentation.ipynb on GitHub.

Architecture
Training a U-Net architecture from scratch requires a lot of trainable parameters. As
discussed in “Other considerations” on page 154 it’s difficult to label datasets for tasks
such as object detection and segmentation. Therefore, to use the labeled data effi‐
ciently, it is better to use a pretrained backbone and employ transfer learning for the
encoder block. As in Chapter 3, we can use a pretrained MobileNetV2 to create the
encoding:

 base_model = tf.keras.applications.MobileNetV2(
 input_shape=[128, 128, 3], include_top=False)

The decoder side will consist of upsampling layers to get back to the desired mask
shape. The decoder also needs feature maps from specific layers of the encoder (skip
connections). The layers of the MobileNetV2 model that we need can be obtained by
name as follows:

layer_names = [
 'block_1_expand_relu', # 64x64
 'block_3_expand_relu', # 32x32
 'block_6_expand_relu', # 16x16
 'block_13_expand_relu', # 8x8
 'block_16_project', # 4x4
]
base_model_outputs = [base_model.get_layer(name).output for name in layer_names]

Segmentation | 169

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/04_detect_segment/04b_unet_segmentation.ipynb

The “down stack” or lefthand side of the U-Net architecture then consists of the
image as input, and these layers as outputs. We are carrying out transfer learning, so
the entire lefthand side does not need weight adjustments:

down_stack = tf.keras.Model(inputs=base_model.input,
 outputs=base_model_outputs,
 name='pretrained_mobilenet')
down_stack.trainable = False

Upsampling in Keras can be accomplished using a Conv2DTranspose layer. We also
add batch normalization and nonlinearity to each step of the upsampling:

def upsample(filters, size, name):
 return tf.keras.Sequential([
 tf.keras.layers.Conv2DTranspose(filters, size,
 strides=2, padding='same'),
 tf.keras.layers.BatchNormalization(),
 tf.keras.layers.ReLU()
], name=name)

up_stack = [
 upsample(512, 3, 'upsample_4x4_to_8x8'),
 upsample(256, 3, 'upsample_8x8_to_16x16'),
 upsample(128, 3, 'upsample_16x16_to_32x32'),
 upsample(64, 3, 'upsample_32x32_to_64x64')
]

Each stage of the decoder up stack is concatenated with the corresponding layer of
the encoder down stack:

for up, skip in zip(up_stack, skips):
 x = up(x)
 concat = tf.keras.layers.Concatenate()
 x = concat([x, skip])

Training
We can display the predictions on a few selected images using a Keras callback:

class DisplayCallback(tf.keras.callbacks.Callback):
 def on_epoch_end(self, epoch, logs=None):
 show_predictions(train_dataset, 1)

model.fit(train_dataset, ...,
 callbacks=[DisplayCallback()])

The result of doing so on the Oxford Pets dataset is shown in Figure 4-35. Note that
the model starts out with garbage (top row), as one would expect, but then learns
which pixels correspond to the animal and which pixels correspond to the back‐
ground.

170 | Chapter 4: Object Detection and Image Segmentation

Figure 4-35. The predicted mask on the input image improves epoch by epoch as the
model is trained.

However, because the model is trained to predict each pixel as background, outline,
or interior independently of the other pixels, we see artifacts such as unclosed regions
and disconnected pixels. The model doesn’t realize that the region corresponding to
the cat should be closed. That is why this approach is mostly used on images where
the segments to be detected do not need to be contiguous, like the example in
Figure 4-31, where the “road,” “sky,” and “vegetation” segments often have discontinu‐
ities.

An example of an application is in self-driving algorithms, to detect the road.
Another is in satellite imagery, where a U-Net architecture was used to solve the hard
problem of distinguishing clouds from snow; both are white, but snow coverage is
useful ground-level information, whereas cloud obstruction means that the image
needs to be retaken.

Segmentation | 171

Current Research Directions
For object detection, a recent landmark is EfficientDet, which builds an object detec‐
tion architecture on top of the EfficientNet backbone. Apart from the backbone, it
brings a new class of multilayer FPNs called the bi-directional feature pyramid net‐
work (BiFPN).

For semantic segmentation, U-Net is the simplest but not the state-of-the-art archi‐
tecture. You can read about more complex approaches in the papers on DeepLabv3
and the pyramid scene parsing network (PSPNet). DeepLabv3 is currently considered
state of the art for image segmentation and is the architecture implemented in the
TensorFlow Model Garden.

Kirillov et al. recently opened up a new field in object detection with their proposed
panoptic segmentation task, which combines instance segmentation and full-scene
semantic segmentation into a single model. Objects are classified in two ways: either
countable objects like “persons” or “cars” that are detected individually, or uncounta‐
ble types of objects like “the road” or “the sky” which are segmented globally. The cur‐
rent top approaches in this domain are Panoptic FPN and Panoptic DeepLab, both
implemented as part of the Detectron2 platform.

Summary
In this chapter, we looked at object detection and image segmentation methods. We
started with YOLO, considering its limitations, and then discussed RetinaNet, which
innovates over YOLO in terms of both the architecture and the losses used. We also
discussed Mask R-CNN to carry out instance segmentation and U-Net to carry out
semantic segmentation.

In the next chapters, we will delve more deeply into different parts of the computer
vision pipeline using the simple transfer learning image classification architecture
from Chapter 3 as our core model. The pipeline steps remain the same regardless of
the backbone architecture or the problem being solved.

172 | Chapter 4: Object Detection and Image Segmentation

https://arxiv.org/abs/1911.09070
https://arxiv.org/abs/1706.05587
https://arxiv.org/abs/1612.01105
https://oreil.ly/FYKgH
https://arxiv.org/abs/1801.00868
https://arxiv.org/abs/1901.02446v2
https://arxiv.org/abs/1911.10194v3
https://oreil.ly/8x1sB

CHAPTER 5

Creating Vision Datasets

To carry out machine learning on images, we need images. Of the use cases we looked
at in Chapter 4, the vast majority were for supervised machine learning. For such
models, we also need the correct answer, or label, to train the ML model. If you are
going to train an unsupervised ML model or a self-supervised model like a GAN or
autoencoder, you can leave out the labels. In this chapter, we will look at how to create
a machine learning dataset consisting of images and labels.

The code for this chapter is in the 05_create_dataset folder of the
book’s GitHub repository. We will provide file names for code sam‐
ples and notebooks where applicable.

Collecting Images
In most ML projects, the first stage is to collect the data. The data collection might be
done in any number of ways: by mounting a camera at a traffic intersection, connect‐
ing to a digital catalog to obtain photographs of auto parts, purchasing an archive of
satellite imagery, etc. It can be a logistical activity (mounting traffic cameras), a tech‐
nical activity (building a software connector to the catalog database), or a commercial
one (purchasing an image archive).

173

https://github.com/GoogleCloudPlatform/practical-ml-vision-book

Metadata as Input
Because the success of an ML project is highly dependent on the quality and quantity
of the data, we might need to collect not just the image data but also a variety of meta‐
data about the context in which these images were acquired (for example, the weather
at the time that a photograph of the traffic intersection was taken, and the status of all
the traffic lights at that intersection). Although we will focus only on images in this
book, remember that you can dramatically improve the accuracy of your ML model
by feeding such metadata into one of the late-stage dense layers of your image model
as contextual features. In essence, this concatenates the metadata with the image
embeddings and trains a dense neural network in conjunction with the image model.
For more details, see the discussion of the Multimodal Input design pattern in Chap‐
ter 2 of the book Machine Learning Design Patterns by Valliappa Lakshmanan, Sara
Robinson, and Michael Munn (O’Reilly).

Photographs
Photographs are one of the most common sources of image data. These can include
photographs taken from social media and other sources, and photographs taken
under controlled conditions by permanently mounted cameras.

One of the first choices we need to make when collecting images is the placement of
the camera and the size and resolution of the image. Obviously, the image has to
frame whatever it is that we are interested in—for example, a camera mounted to
photograph a traffic intersection would need to have an unobstructed view of the
entire intersection.

Intuitively, it might seem that we will get the highest-accuracy models by training
them on the highest-resolution images, and so we should endeavor to collect data at
the highest resolution we can. However, high image resolutions come with several
drawbacks:

• Larger images will require larger models—the number of weights in every layer
of a convolutional model scales proportionally to the size of the input image.
We’ll need four times the number of parameters to train a model on 256x256
images than on 128x128 images, so training will take longer and will require
more computational capacity and additional memory.

• The machines that we train ML models on have limited memory (RAM), so the
larger the image size, the fewer images we can have in a batch. In general, larger
batch sizes lead to smoother training curves. So, large images may be counterpro‐
ductive in terms of accuracy.

174 | Chapter 5: Creating Vision Datasets

https://www.oreilly.com/library/view/machine-learning-design/9781098115777/

1 This is common in Internet of Things (IoT) applications; see the Wikipedia entry on “Fog computing”.

• Higher-resolution images, especially those taken in outdoor and low-light envi‐
ronments, may have more noise. Smoothing the images down to a lower resolu‐
tion might lead to faster training and higher accuracy.

• Collecting and saving a high-resolution image takes longer than collecting and
saving a lower-resolution one. Therefore, to capture high-speed action, it might
be necessary to use a lower resolution.

• Higher-resolution images take longer to transmit. So, if you are collecting images
on the edge1 and sending them to the cloud for inference, you can do faster infer‐
ence by using smaller, lower-resolution images.

The recommendation, therefore, is to use the highest resolution that is warranted by
the noise characteristics of your images and that your machine learning infrastruc‐
ture budget can handle. Do not lower the resolution so much that the objects of inter‐
est cannot be resolved.

In general, it is worth using the highest-quality camera (in terms of lens, sensitivity,
and so on) that your budget will allow—many computer vision problems are simpli‐
fied if the images used during prediction will always be in focus, if the white balance
will be consistent, and if the effect of noise on the images is minimal. Some of these
problems can be rectified using image preprocessing (image preprocessing techni‐
ques will be covered in Chapter 6). Still, it is better to have images without these
issues than to collect data and have to correct them after the fact.

Cameras can typically save photographs in a compressed (e.g., JPEG) or uncom‐
pressed (e.g., RAW) format. When saving JPEG photographs, we can often choose the
quality. Lower-quality and lower-resolution JPEG files compress better, and so incur
lower storage costs. As described previously, lower-resolution images will also reduce
compute costs. Because storage is inexpensive relative to compute, our recommenda‐
tion is to choose a high-quality threshold for the JPEGs (95%+) and store them at a
lower resolution.

The lowest resolution you can use depends on the problem. If you
are trying to classify landscape photographs to determine whether
they are of water or land, you might be able to get away with 12x16
images. If your aim is to identify the type of trees in those land‐
scape photographs, you might need the pixels to be small enough
to clearly pick up on the shapes of leaves, so you might need
768x1024 images.

Collecting Images | 175

https://oreil.ly/Txyj8

Use uncompressed images only if your images consist of human-generated content
such as CAD drawings where the fuzzy edges of the JPEG compression might cause
issues with recognition.

Imaging
Many instruments (X-rays, MRIs, spectroscopes, radars, lidars, and so on) create 2D
or 3D images of a space. X-rays are projections of a 3D object and may be treated as
grayscale images (see Figure 5-1). While typical photographs contain three (red,
green, blue) channels, these images have only one channel.

Figure 5-1. A chest X-ray can be treated as a grayscale image. Image courtesy of Google
AI Blog.

If the instrument measures multiple quantities, we can treat the reflectance at differ‐
ent wavelengths, Doppler velocity, and any other measured quantities as separate
channels of the image. In tomography, the projections are of thin 3D slices, thus cre‐
ating multiple cross-sectional images; these cross-sections may be treated as channels
of a single image.

There are some special considerations associated with imagery data depending on the
sensor geometry.

Polar grids
Radar and ultrasound are carried out in a polar coordinate system (see Figure 5-2).
You can either treat the polar 2D data itself as the input image, or transform it into a
Cartesian coordinate system before using it as an input to machine learning models.
There are trade-offs in either approach: in the polar coordinate system there is no
interpolation or repeated pixels but the size of a pixel varies throughout the image,
whereas in the Cartesian coordinate system the pixel size is consistent but much of
the data is missing, interpolated, or aggregated when remapped. For example, in
Figure 5-2, many of the pixels at the bottom left will be missing and will have to be

176 | Chapter 5: Creating Vision Datasets

https://oreil.ly/RoyB0
https://oreil.ly/RoyB0

assigned some numerical value for ML purposes. Meanwhile, pixels at the bottom
right will involve aggregation of many values from the pixel grid and pixels at the top
will involve interpolation between the pixel values. The presence of all three situa‐
tions in Cartesian images greatly complicates the learning task.

Figure 5-2. Using a polar grid as-is versus remapping the data to a Cartesian grid.

We recommend using the polar grid as the input image to ML models, and including
the distance of each pixel from the center (or the size of the pixel) as an additional
input to the ML model. Because every pixel has a different size, the easiest way to
incorporate this information is to treat the size of the pixel as an additional channel.
This way we can take advantage of all of the image data without losing information
through coordinate transformation.

Satellite channels
When working with satellite images, it might be worth working in the original satel‐
lite view or a parallax-corrected grid rather than remapping the images to Earth coor‐
dinates. If using projected map data, try to carry out the machine learning in the
original projection of the data. Treat images collected of the same location at approxi‐
mately the same time, but at different wavelengths, as channels (see Figure 5-3). Note
that pretrained models are usually trained on three-channel images (RGB), so trans‐
fer learning and fine-tuning will not work, but the underlying architectures can work
with any number of channels if you are training from scratch.

Collecting Images | 177

Figure 5-3. Images collected by instruments onboard the GOES-16 weather satellite at
approximately the same time on December 21, 2020. Treat the original scalar values of
these colorized images as six-channel images that are input to the model. Images cour‐
tesy of the US National Weather Service.

Geospatial layers
If you have multiple map layers (e.g., land ownership, topography, population den‐
sity; see Figure 5-4) collected in different projections, you will have to remap them
into the same projection, line up the pixels, and treat these different layers as chan‐
nels of an image. In such situations, it might be useful to include the latitude of the
pixel as an additional input channel to the model so that changes in pixel size can be
accounted for.

Categorical layers (such as land cover type) may have to be one-hot encoded so that
the land cover type becomes five channels if there are five possible land cover types.

178 | Chapter 5: Creating Vision Datasets

https://oreil.ly/VTOBi

Figure 5-4. Geospatial layers can be treated as image channels. Image courtesy of USGS.

Proof of Concept
In many situations, you may not have the data on hand, and collecting it for a proof
of concept would take too long. You may look into purchasing similar data to under‐
stand the feasibility of a project before investing in routine data collection. When
purchasing images, keep in mind that you want to acquire images that are similar in
quality, resolution, etc. to the images that you will ultimately be able to use in the
actual project.

For example, many of the machine learning algorithms for the US GOES-16 satellite
had to be developed before the satellite was launched. Naturally, there was no data
available! In order to decide on the list of ML models that would be built on the
GOES-16 data, similar-quality data already being collected by the European SEVIRI
satellite was used to carry out proof-of-concept tests.

Another way to carry out a proof of concept is to simulate images. We will see an
example of this in Chapter 11, where the ability to count tomatoes on a vine is illus‐
trated through simulated images. When simulating images, it can be helpful to mod‐
ify existing images rather than creating them from scratch. For example, the
simulated tomato vine images might have been easier to generate if photographs of
green vines, to which red tomatoes of different sizes could be added, had been readily
available.

Collecting Images | 179

https://oreil.ly/mmi41

Do not train a model on perfect data and then try to apply it to
imperfect images. For example, if you need a model to be able to
identify flowers from photographs that hikers take on trails, you
should not train the model on photographs taken by professional
photographers that were subsequently retouched.

Data Types
So far, we have processed only photographs. As discussed in the previous section,
there are other types of images, such as geospatial layers, MRI scans, or spectrograms
of sound, to which machine learning can be applied. Mathematically, all that the ML
techniques require is a 4D tensor (batch x height x width x channels) as input. As
long as our data can be put into this form, computer vision methods may be applied.

Of course, you have to keep in mind the underlying concepts that make certain tech‐
niques work well. For example, you may not find success in applying convolutional
filters to the problem of finding defective pixels on computer monitors because con‐
volutional filters work well only when there is spatial correlation between adjacent
pixels.

Channels
A typical photograph is stored as a 24-bit RGB image with three channels (red, green,
and blue), each of which is represented by an 8-bit number in the range 0–255. Some
computer-generated images also have a fourth alpha channel, which captures the
transparency of the pixel. The alpha channel is useful primarily to overlay or compo‐
site images together.

Scaling
Machine learning frameworks and pretrained models often expect that the pixel val‐
ues are scaled from [0,255] to [0,1]. ML models typically ignore the alpha channel. In
TensorFlow, this is done using:

Read compressed data from file into a string.
img = tf.io.read_file(filename)
Convert the compressed string to a 3D uint8 tensor.
img = tf.image.decode_jpeg(img, channels=3)
Convert to floats in the [0,1] range.
img = tf.image.convert_image_dtype(img, tf.float32)

180 | Chapter 5: Creating Vision Datasets

https://oreil.ly/OIygm

2 See “Understanding Memory Formats” on the oneAPI Deep Neural Network Library.

Channel order
The shape of a typical image input is [height, width, channels], where the number of
channels is typically 3 for RGB images and 1 for grayscale. This is called a channels-
last representation and is the default with TensorFlow. Earlier ML packages such as
Theano and early versions of ML infrastructure such as Google’s Tensor Processing
Unit (TPU) v1.0 used a channels-first ordering. The channels-first order is more effi‐
cient in terms of computation because it reduces back-and-forth seeks within mem‐
ory.2 However, most image formats store the data pixel by pixel, so channels-last is
the more natural data ingest and output format. The move from channels-first to
channels-last is an example of ease of use being prioritized over efficiency as compu‐
tational hardware becomes more powerful.

Because channel order can vary, Keras allows you to specify the order in the global
$HOME/.keras/keras.json configuration file:

{
 "image_data_format": "channels_last",
 "backend": "tensorflow",
 "epsilon": 1e-07,
 "floatx": "float32"
}

The default is to use TensorFlow as the Keras backend, and therefore the image for‐
mat defaults to channels_last. This is what we will do in this book. Because this is a
global setting that will affect every model being run on the system, we strongly rec‐
ommend that you don’t fiddle with this file.

If you have an image that is channels-first and need to change it to channels-last, you
can use tf.einsum():

image = tf.einsum('chw->hwc', channels_first_image)

or simply do a transpose, providing the appropriate axes:

image = tf.transpose(channels_first_image, perm=(1, 2, 0))

Data Types | 181

https://oreil.ly/HPmsI

tf.einsum
You can use tf.einsum() to apply element-wise computation in a simple way. This
uses a shorthand form known as Einstein summation. For example, to transpose a
matrix, you can simply do:

output = tf.einsum('ij->ji', m)
output[j,i] = m[i,j]

A comma in Einstein summation is a matrix multiplication:

output = tf.einsum('i,j->ij', u, v)
output[i,j] = u[i]*v[j]

The shorthand syntax also supports summation and broadcasting. See the Tensor‐
Flow documentation for details.

Grayscale
If you have a grayscale image, or a simple 2D array of numbers, you may have to
expand the dimensions to change the shape from [height, width] to [height, width, 1]:

image = tf.expand_dims(arr2d, axis=-1)

By specifying axis=-1, we ask for the channel dimension to be appended to the exist‐
ing shape and the new channel dimension to be set to 1.

Geospatial Data
Geospatial data can either be generated from map layers or as a result of remote sens‐
ing from drones, satellites, radars, and the like.

Raster data
Geospatial data that results from maps often has raster bands (2D arrays of pixel val‐
ues) that can be treated as channels. For example, you may have several raster bands
covering a land area: population density, land cover type, flooding propensity, and so
on. In order to apply computer vision techniques to such raster data, simply read the
individual bands and stack them together to form an image:

image = tf.stack([read_into_2darray(b) for b in raster_bands], axis=-1)

In addition to raster data, you might also have vector data such as the locations of
roads, rivers, states, or cities. In that case, you have to rasterize the data before using it
in image-based ML models. For example, you might draw the roads or rivers as a set
of one-pixel-wide line segments (see the top panel of Figure 5-5). If the vector data
consists of polygons, such as state boundaries, you would rasterize the data by filling
in the pixels that fall within the boundary. If there are 15 states, then you will end up

182 | Chapter 5: Creating Vision Datasets

https://oreil.ly/wiKxC
https://oreil.ly/wiKxC

with 15 raster images, with each image containing 1 in the pixels that are within the
boundary of the corresponding state—this is the image equivalent of one-hot encod‐
ing categorical values (see the bottom panel of Figure 5-5). If the vector data consists
of city boundaries, you’ll have to decide whether to treat this as a Boolean value (the
pixel value is 0 if rural, and 1 if it is a city) or a categorical variable (in which case,
you’d generate N raster bands for the N cities in the dataset).

Figure 5-5. Rasterizing vector data. In the rasterized images, the 1s are highlighted. Map
sources: OpenStreetMap (top) and Wikipedia (bottom).

The raster data will typically be in a geographic projection. Some projections (such as
Lambert conformal) preserve areas, others (such as Mercator) preserve direction, and
others (such as equidistant cylindrical) are chosen because they are simple to create.
In our experience, any projection works fine for machine learning, but you should
ensure that all the raster bands are in the same projection. It can also be helpful to
add the latitude as an additional input channel if the size of a pixel will vary with
latitude.

Remote sensing
Remotely sensed data is collected by an imaging instrument. If the instrument in
question is a camera (as with a lot of drone images), the result will be an image with
three channels. On the other hand, if there are multiple instruments on board the sat‐
ellite capturing the images or if the instrument can operate at multiple frequencies,
the result will be an image with a large number of channels.

Often, remote sensing images are colorized for visualization pur‐
poses. It is better to go back and get the raw numbers that are
sensed by the instrument rather than using these colorized images.

Data Types | 183

Make sure that you read and normalize the images as we did for the photographs. For
example, scale the values found in each image from 0 to 1. Sometimes the data will
contain outliers. For example, bathymetric images may have outlier values due to
ocean waves and tides. In such cases, it may be necessary to clip the data to a reason‐
able range before scaling it.

Remote sensing images will often contain missing data (such as the part of the image
outside of the satellite horizon or areas of clutter in radar images). If it is possible to
crop out the missing areas, do so. Impute missing values by interpolating over them if
the missing areas are small. If the missing values consist of large areas, or occur in a
significant fraction of the pixels, create a separate raster band that indicates whether
the pixel is missing a true value or has been replaced by a sentinel value such as zero.

Both geospatial and remote sensing data require a significant amount of processing
before they can be input into ML models. Because of this, it is worthwhile to have a
scripted/automated data preparation step or pipeline that takes the raw images, pro‐
cesses them into raster bands, stacks them, and writes them out into an efficient for‐
mat such as TensorFlow Records.

Audio and Video
Audio is a 1D signal whereas videos are 3D. It is better to use ML techniques that
have been devised specifically for audio and video, but a simple first solution might
involve applying image ML techniques to audio and video data. In this section, we’ll
discuss this approach. Audio and video ML frameworks are outside the scope of this
book.

Spectrogram
To do machine learning on audio, it is necessary to split the audio into chunks and
then apply ML to these time windows. The size of the time window depends on
what’s being detected—you need a few seconds to identify words, but a fraction of a
second to identify instruments.

The result is a 1D signal, so it is possible to use Conv1D instead of Conv2D layers to
process audio data. Technically speaking, this would be signal processing in the time
space. However, the results tend to be better if audio signals are represented as spec‐
trograms—a stacked view of the spectrum of frequencies in the audio signal as it
varies over time. In a spectrogram, the x-axis of the image represents time and the y-
axis represents the frequency. The pixel value represents the spectral density, which is
the loudness of the audio signal at a specific frequency (see Figure 5-6). Typically, the
spectral density is represented in decibels, so it is best to use the logarithm of the
spectrogram as the image input.

184 | Chapter 5: Creating Vision Datasets

To read and convert an audio signal into the log of the spectrogram, use the scipy
package:

from scipy import signal
from scipy.io import wavfile
sample_rate, samples = wavfile.read(filename)
_, _, spectro = signal.spectrogram(samples, sample_rate)
img = np.log(spectro)

Figure 5-6. Audio signal (left) and spectrogram (right) of two musical instruments.

Natural Language Processing Using Computer Vision Techniques
In the spectrogram, we are computing the frequency characteristics of the signal at a
point in time and then looking at the variation in this frequency to create a 2D image.
This idea of grouping 1D objects into 2D in order to use computer vision techniques
can also be applied to natural language processing problems!

For example, it is possible to take a document-understanding problem and treat it like
a computer-vision problem. The idea is to use a pretrained embedding such as the
Universal Sentence Encoder (USE) or BERT to convert sentences to embeddings (the
full code is in 05_audio.ipynb on GitHub):

paragraph = ...
embed = hub.load(
 https://tfhub.dev/google/universal-sentence-encoder/4")
embeddings = embed(paragraph.split('.'))

Data Types | 185

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/05_create_dataset/05_audio.ipynb

In this code snippet, we are splitting the paragraph into a list of sentences and apply‐
ing the USE embedder to a set of sentences. Because embeddings is now a 2D tensor,
it is possible to treat the paragraph/review/page/document (whatever your grouping
unit is) as an image (see Figure 5-7). The image is 12x512 because there are 12 senten‐
ces in the paragraph and we used an embedding of size 512.

Figure 5-7. By stacking the text embeddings of sentences, we can treat a paragraph as an
image. This is the representation of a paragraph from a Herman Hesse novel.

Frame by frame
Videos consist of frames, each of which is an image. The obvious approach to han‐
dling videos is to carry out image processing on the individual frames, and postpro‐
cess the results into an analysis of the entire video. We can use the OpenCV (cv2)
package to read a video file in one of the standard formats and obtain a frame:

cap = cv2.VideoCapture(filename)
num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
for i in range(num_frames):
 readok, frame = cap.read()
 if readok:
 img = tf.convert_to_tensor(frame)

For example, we might classify the image frames, and treat the result of the video
classification problem as the set of all the categories found in all the frames. The
problem is that such an approach loses sight of the fact that adjacent frames in a video
are highly correlated, just as adjacent pixels in an image are highly correlated.

Conv3D
Instead of processing videos one frame at a time, we can compute rolling averages of
video frames and then apply computer vision algorithms. This approach is particu‐
larly useful when the videos are grainy. Unlike the frame-by-frame approach, the roll‐
ing average takes advantage of frame correlation to denoise the image.

186 | Chapter 5: Creating Vision Datasets

A more sophisticated approach is to use 3D convolution. We read video clips into a
5D tensor with the shape [batch, time, height, width, channels], breaking the movie
into short clips if necessary:

def read_video(filename):
 cap = cv2.VideoCapture(filename)
 num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
 frames = []
 for i in range(num_frames):
 readok, frame = cap.read()
 if readok:
 frames.append(frame)
 return tf.expand_dims(tf.convert_to_tensor(frames), -1)

Then, we apply Conv3D instead of Conv2D in our image processing pipeline. This is
similar to a rolling average where the weights of each time step are learned from the
data, followed by a nonlinear activation function.

Another approach is to use recurrent neural networks (RNNs) and other sequence
methods that are more suitable for time-series data. However, because RNNs of video
sequences are quite hard to train, the 3D convolutional approach tends to be more
practical. An alternative is to extract features from the time signal using convolution
and then pass the results of the convolution filter to a less complex RNN.

Manual Labeling
In many ML projects, the first step at which the data science team gets involved is in
labeling the image data. Even if the labeling will be automated, the first few images in
a proof of concept are almost always hand-labeled. The form and organization will
differ based on the problem type (image classification or object detection) and
whether an image can have multiple labels or only one.

To hand-label images, a rater views the image, determines the label(s), and records
the label(s). There are two typical approaches to doing this recording: using a folder
structure and a metadata table.

In a folder organization, raters simply move images to different folders depending on
what their label is. All flowers that are daisies are stored in a folder named daisy, for
example. Raters can do this quickly because most operating systems provide previews
of images and handy ways to select groups of images and move them into folders (see
Figure 5-8).

The problem with the folder approach is that it leads to duplication if an image can
have multiple labels—for example, if an image contains both roses and daisies.

Manual Labeling | 187

Figure 5-8. Preview images and quickly move them to the appropriate folder.

The alternative, and recommended, approach is to record the label(s) in a metadata
table (such as in a spreadsheet or a CSV file) that has at least two columns—one col‐
umn is the URL to the image file, and the other is the list of labels that are valid for
the image:

$ gsutil cat gs://cloud-ml-data/img/flower_photos/all_data.csv | head -5
gs://cloud-ml-data/img/flower_photos/daisy/100080576_f52e8ee070_n.jpg,daisy
gs://cloud-ml-data/img/flower_photos/daisy/10140303196_b88d3d6cec.jpg,daisy
gs://cloud-ml-data/img/flower_photos/daisy/10172379554_b296050f82_n.jpg,daisy
gs://cloud-ml-data/img/flower_photos/daisy/10172567486_2748826a8b.jpg,daisy
gs://cloud-ml-data/img/flower_photos/daisy/10172636503_21bededa75_n.jpg,daisy

A good approach to marry the efficiency of the folder approach and the generalizabil‐
ity of the metadata table approach is to organize the images into folders and then use
a script to crawl the images and create the metadata table.

Multilabel
If an image can be associated with multiple labels (for example, if an image can con‐
tain both daisies and sunflowers), one approach is to simply copy the image into both
folders and have two separate lines:

gs://.../sunflower/100080576_f52e8ee070_n.jpg,sunflower
gs://.../daisy/100080576_f52e8ee070_n.jpg,daisy

188 | Chapter 5: Creating Vision Datasets

However, having duplicates like this will make it more difficult to train a truly multi‐
label multiclass problem. A better approach is to make the labels column contain all
the matching categories:

gs://.../multi/100080576_f52e8ee070_n.jpg,sunflower daisy

The ingest pipeline will have to parse the labels string to extract the list of matching
categories using tf.strings.split.

Object Detection
For object detection, the metadata file needs to include the bounding box of the
object in the image. This can be accomplished by having a third column that contains
the bounding box vertices in a predefined order (such as counterclockwise starting
from top-left). For segmentation problems, this column will contain a polygon rather
than a bounding box (see Figure 5-9).

Figure 5-9. The metadata file in object detection and segmentation problems needs to
include a bounding box or polygon, respectively.

Doughnut-shaped objects (with a center that is not part of the object) can be repre‐
sented by a pair of polygons where the inner polygon has its vertices running in the
opposite direction. To avoid this complexity, the segmentation boundaries are some‐
times represented simply as a set of pixels instead of polygons.

Labeling at Scale
Manually labeling thousands of images is cumbersome and error-prone. How can we
make it more efficient and accurate? One way is to use tools that make it possible to
hand-label thousands of images efficiently. The other is to use methods to catch and
correct labeling errors.

Labeling at Scale | 189

Labeling User Interface
A labeling tool should have a facility to display the image, and enable the rater to
quickly select valid categories and save the rating to a database.

To support object identification and image segmentation use cases, the tool should
have annotation capability and the ability to translate drawn bounding boxes or poly‐
gons into image pixel coordinates. The Computer Vision Annotation Tool (see
Figure 5-10) is a free, web-based video and image annotation tool that is available
online and can be installed locally. It supports a variety of annotation formats.

Figure 5-10. A tool for labeling images efficiently.

Multiple Tasks
Often, we will need to label images for multiple tasks. For example, we might need to
classify the same images by flower type (daisy, tulip, ...), color (yellow, red, ...), loca‐
tion (indoors, outdoors, ...), planting style (potted, in-ground, …), and so on. An effi‐
cient approach in such situations is to do the labeling using the interactive
functionality of a Jupyter notebook (see Figure 5-11).

190 | Chapter 5: Creating Vision Datasets

https://oreil.ly/Mpmdq
https://cvat.org

Figure 5-11. Efficiently labeling images for multiple tasks in a Jupyter notebook.

The functionality is provided by the Python package multi-label-pigeon:

annotations = multi_label_annotate(
 filenames,
 options={'flower':['daisy','tulip', 'rose'],
 'color':['yellow','red', 'other'],
 'location':['indoors','outdoors']},
 display_fn=lambda filename: display(Image(filename))
)
with open('label.json', 'w') as ofp:
 json.dump(annotations, ofp, indent=2)

The full code is in 05_label_images.ipynb on GitHub for this book. The output is a
JSON file with annotations for all the tasks for all the images:

Labeling at Scale | 191

https://oreil.ly/NLwqJ
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/05_create_dataset/05_label_images.ipynb

{
 "flower_images/10172379554_b296050f82_n.jpg": {
 "flower": [
 "daisy"
],
 "color": [
 "red"
],
 "location": [
 "outdoors"
]
 },

Voting and Crowdsourcing
Manual labeling is subject to two challenges: human error and inherent uncertainty.
Raters may get tired and wrongly identify an image. It may also be the case that the
classification is ambiguous. Consider for example an X-ray image: radiologists may
differ on whether something is a fracture or not.

In both these situations, it can be helpful to implement a voting system. For example,
an image might be shown to two raters. If the raters agree, their label is assigned to
the image. If the raters disagree, we can choose to do one of several things:

• Discard the image if we don’t want to train using ambiguous data.
• Consider the image as belonging to a neutral class.
• Have the final label be determined by a third labeler, in effect making it a major‐

ity vote of three labelers. Of course, it is possible to increase the voting pool to
any odd number.

Voting applies to multilabel problems as well. We just need to treat the incidence of
each category as a binary classification problem, and then assign to an image all the
labels on which a majority of raters agree.

Even object identification and segmentation boundaries can be determined via vot‐
ing. An example of such a system is shown in Figure 5-12—the primary purpose of
the CAPTCHA system is to identify whether a user is a robot or a human, but a sec‐
ondary purpose is to crowdsource the labeling of images. It is clear that by decreasing
the size of the tiles, it is possible to get a finer-grained labeling. By occasionally
adding images or tiling, and collecting the results over many users, it is possible to get
images successfully labeled.

192 | Chapter 5: Creating Vision Datasets

https://oreil.ly/9Ww3Y

Figure 5-12. Crowdsourcing object detection or segmentation polygons.

Labeling Services
Even with efficient labeling, it can take days or months to label all the images needed
to train a state-of-the-art image model. This is not a productive use of a data
scientist’s time. Because of this, many labeling services have cropped up. These are
businesses that distribute the work of labeling images among dozens of employees at
low-cost locations. Typically, we have to provide a few sample images and a descrip‐
tion of the technique that needs to be employed to label images.

Labeling services are a bit more sophisticated than crowdsourcing. These services
work not only for well-known objects (stop signs, crosswalks, etc.), but also for tasks
where a layperson can be taught to make the correct decision quickly (e.g., a fracture
versus a scratch mark in X-ray images). That said, you would probably not use label‐
ing services for tasks like identifying the molecular structure of a virus that would
take significant domain expertise.

Examples of labeling services include AI Platform Data Labeling Service, Clarifai, and
Lionbridge. You’d typically work with the procurement department of your organiza‐
tion to use such a service. You should also verify how these services handle sensitive
or personally identifying data.

Automated Labeling
In many situations, it is possible to obtain labels in an automated way. These methods
can be useful even if they are not 100% accurate because it is far more efficient for
raters to correct automatically obtained labels than it is for them to assign labels to
images one by one.

Automated Labeling | 193

https://oreil.ly/V8vfu
https://oreil.ly/U4ylE
https://oreil.ly/NR5Z0

Labels from Related Data
As an example, you might be able to obtain the label for an image by looking at the
section of the product catalog that the image appears in, or by doing entity extraction
from the words that describe the image.

In some cases, ground truth is available by looking at only a few of the pixels of the
image. For example, seismic images can be labeled at locations where wells were dug
and core samples extracted. A radar image may be labeled using the readings of
ground rain gauges at locations where those gauges are installed. These point labels
may be used to label tiles of the original image. Alternatively, the point labels may be
spatially interpolated, and the spatially interpolated data used as labels for tasks such
as segmentation.

Noisy Student
It is possible to stretch the labeling of images using a Noisy Student model. This
approach works as follows:

• Manually label, say, 10,000 images.
• Use these images to train a small machine learning model. This is the teacher

model.
• Use the trained machine learning model to predict the labels of, say, one million

unlabeled images.
• Train a larger machine learning model, called the student model, on the combina‐

tion of labeled and pseudo-labeled images. During the learning of the student
model, employ dropout and random data augmentations (covered in Chapter 6)
so that this model generalizes better than the teacher.

• Iterate by putting the student model back as the teacher.

It is possible to manually correct the pseudo-labels by choosing images where the
machine learning models are not confident. This can be incorporated into the Noisy
Student paradigm by doing the manual labeling before putting the student back as
the new teacher model.

Self-Supervised Learning
In some cases, the machine learning approach can itself provide labels. For example,
to create embeddings of images, we can train an autoencoder, as we will describe in
Chapter 10. In an autoencoder, the image serves as its own label.

Another way that learning can be self-supervised is if the label will be known after
some time. It may be possible to label a medical image based on the eventual outcome
for the patient. If a patient subsequently develops emphysema, for example, that label

194 | Chapter 5: Creating Vision Datasets

https://arxiv.org/abs/1911.04252

can be applied to lung images taken of the patient a few months prior to the diagno‐
sis. Such a labeling method works for many forecasts of future activity: a satellite
weather image might be labeled based on the subsequent occurrence of cloud-to-
ground lightning as detected by a ground-based network, and a dataset for predicting
whether a user is going to abandon their shopping cart or cancel their subscription
can be labeled based on the eventual action of the user. So, even if our images don’t
have a label immediately at capture time, it can be worth holding on to them until we
eventually get a label for them.

Many data quality problems can be framed in a self-supervised way. For example, if
the task is to fill in an image of the ground when clouds are obstructing the view, the
model can be trained by artificially removing parts of a clear-sky image and using the
actual pixel values as labels.

Bias
The ideal machine learning dataset is one that allows us to train a model that will be
perfect when it is placed into production. If, on the other hand, certain examples are
under- or overrepresented in the dataset in such a way as to produce lower accuracy
in those scenarios when they are encountered in production, then we have a problem.
The dataset is then said to be biased.

In this section, we will discuss sources of dataset bias, how to collect data for a train‐
ing dataset in an unbiased way, and how to detect bias in your dataset.

Sources of Bias
Bias in a dataset is a characteristic of the dataset that will lead to unwanted behavior
when the model is placed into production.

We find that many people confuse two related, but separate, concepts: bias and imbal‐
ance. Bias is different from imbalance—it is quite possible that less than 1% of the
pictures taken by an automatic wildlife camera are of jaguars. A dataset of wildlife
pictures that has a very small proportion of jaguars is to be expected: it’s unbalanced,
but this is not evidence of bias. We might downsample commonly occurring animals
and upsample unusual ones to help the machine learning model learn to identify dif‐
ferent types of wildlife better, but such upsampling does not make the dataset biased.
Instead, dataset bias is any aspect of the dataset that causes the model to behave in
unwanted ways.

There are three sources of bias. Selection bias happens when the model is trained on a
skewed subset of the scenarios that it will encounter in production. Measurement bias
occurs when the way an image is collected varies between training and production.
Confirmation bias happens when the distribution of values in real life leads to the

Bias | 195

model reinforcing unwanted behaviors. Let’s take a closer look at why each of these
might occur; then we’ll quickly show you how to detect bias in a dataset.

Selection Bias
Selection bias usually happens as a result of imperfect data collection—we mistakenly
limit the source of our data, such that certain categories are excluded or poorly sam‐
pled. For example, suppose we’re training a model to identify objects we sell. We
might have trained the model on images in our product catalog, but this may have
caused products from our partners to not be included. Therefore, the model will not
recognize partner items that we sell but that were not in our product catalog. Simi‐
larly, an image model trained on photographs of houses found in county records may
perform poorly on houses under construction if unfinished homes are not subject to
county taxes, and are therefore not in the records.

A common reason for selection bias is that certain types of data are easier to collect
than others. For example, it might be easier to collect images of French and Italian art
than of Jamaican or Fijiian art. Datasets of artworks can therefore underrepresent
certain countries or time periods. Likewise, previous years’ product catalogs may be
easy to find, but competitors’ catalogs for this year might not be available yet, so our
dataset might be up-to-date for our products but not for those of our competitors.

Sometimes selection bias happens simply because the training dataset is collected in a
fixed time period, whereas the production time period is a lot more variable. For
example, the training dataset might have been collected on a clear day, but the system
is expected to work night and day, in clear weather and in rainy weather.

Selection bias can also happen as a result of outlier pruning and dataset cleanup. If we
discard images of houseboats, barns, and mobile homes, the model will not be able to
identify such buildings. If we are creating a dataset of seashells and discard any
images of a shell with the animal still in it, then the model will perform poorly if
shown a living crustacean.

To fix selection bias, it is necessary to work backward from the production system.
What types of houses will need to be identified? Are there enough examples of such
houses in the dataset? If not, the solution is to proactively collect such images.

Measurement Bias
Measurement bias occurs as a result of differences in the way an image is collected for
training versus in production. These variations lead to systematic differences—per‐
haps we used a high-quality camera for the training images, but our production sys‐
tem employs an off-the-shelf camera that has a lower aperture, white balance, and/or
resolution.

196 | Chapter 5: Creating Vision Datasets

Measurement bias can also happen because of differences in who provides the data in
training versus in production. For example, we may want to build a tool to help hik‐
ers identify wildflowers. If the training dataset consists of professional photographs,
the photographs will include sophisticated effects like bokeh that will not be present
in the photographs provided by a typical hiker for purposes of identification.

Measurement bias also happens when the labeling of images is done by a group of
people. Different raters may have different standards, and inconsistencies in labeling
can lead to poorer machine learning models.

Measurement bias can also be quite subtle. Perhaps all the photographs of foxes are
taken against snow, whereas all the photographs of dogs are against grass. A machine
learning model may learn to discriminate between snow and grass and achieve supe‐
rior accuracy to a model that actually learns the features of foxes and dogs. So, we
need to be mindful of what other things are within our images (and examine model
explanations) to ensure our models learn the things we want them to learn.

Confirmation Bias
Remember when we said that many people confuse bias and imbalance? The differ‐
ence and interrelationship between the two is particularly important when it comes to
confirmation bias. A dataset may be biased even if it accurately represents an imbal‐
anced real-world distribution—this is something that you should keep in mind as you
read this section. Remember that bias in a dataset includes anything about the dataset
that leads to unwanted behavior in ML models trained on that dataset.

Donald Rumsfeld, who was the US Secretary of Defense in 2002, famously listed
three categories of knowledge:

There are known knowns; there are things we know we know. We also know there are
known unknowns; that is to say we know there are some things we do not know. But
there are also unknown unknowns—the ones we don’t know we don’t know. And if one
looks throughout the history of our country and other free countries, it is the latter cat‐
egory that tends to be the difficult one.

Confirmation bias is bias that we don’t know about when we collect the data but
which can nevertheless play havoc with models trained on the dataset. Human reluc‐
tance to examine the reasons why certain imbalances exist can lead to ML models
perpetuating existing biases.

Collecting data “in the wild” can lead to confirmation bias. For example, at the time
of writing, firefighters tend to be predominantly men. If we were to collect a random
sample of images of firefighters, chances are that all the images would be of male fire‐
fighters. A machine learning model trained on such a dataset, when shown an image
of a woman firefighter, might generate the caption that this is a woman in costume at
a Halloween party. That would be pretty offensive, wouldn’t it? This is a made-up

Bias | 197

https://oreil.ly/gmbxl

example, but it illustrates how an existing bias in society gets amplified when datasets
reflect the real world. Do a search of recent news headlines about biased AI, and you
will find any number of real-world disasters that have, at their core, a similar bias
because they reflect real-world distributions.

A small-town newspaper will tend to cover events that occur in the town, and by vir‐
tue of this data being “in the wild,” most of the photographs of concerts, fairs, and
outdoor dining will contain images of the majority community. On the other hand,
most of the photographs of minority-community teens that appear in the newspaper
might be photographs of arrests. Arrest photographs of majority-community teens
will also appear in the newspaper, but they will be greatly outnumbered by photo‐
graphs of those teens in outdoor settings. Given such a dataset, a machine learning
model will learn to associate minority-community members with jail and majority-
community members with benign activities. Again, this is an example of a model
confirming and perpetuating the bias of the newspaper editors because of what news‐
paper stories tend to cover.

Confirmation bias can also amplify existing biases in terms of labels. If a company
trains a model to sort through job applications it has received and classify them based
on who finally got hired, the model will learn any bias (whether it is in favor of elite
colleges or against minority candidates) that the company’s current interviewers have.
If the company tends to hire very few Black candidates or highly favors Ivy League
candidates, the model will learn and replicate that. The “unbiased” model has become
extremely biased.

To address confirmation bias, we have to be aware of this blind spot that we have, and
consciously move areas of unknown unknowns to one of the other two categories.
We have to be aware of the existing biases in our company, in our industry, or in soci‐
ety and carefully validate that our dataset is not collected in such a way as to amplify
that bias. The recommended approach involves both awareness (of potential bias)
and active data collection (to mitigate this bias).

Detecting Bias
To detect bias, you can carry out sliced evaluations—essentially, compute the objective
function of your model, but only on members of a group. Compare this with the
value of the metric for non-members of the group. Then investigate any groups for
which the sliced metrics are very different from that of the overall dataset. You can
also apply a Bayesian approach and calculate measures such as “what are the chances
that a retinal scan will be categorized as diseased if the sample is from a racial
minority?”

The Aequitas Fairness Tree approach suggests which metric to monitor depending on
whether the ML model is used punitively or assistively.

198 | Chapter 5: Creating Vision Datasets

https://oreil.ly/eE64O

Creating a Dataset
Once we have collected a set of images and labeled them, we are ready to train an ML
model with those images. However, we will have to split the dataset into three parts:
training, validation, and testing sets. We will also want to take the opportunity to
store the image data in a more efficient format for ML. Let’s look at both of these
steps and how our training program would read files in this format.

Splitting Data
The dataset of images and labels will have to be split into three parts, for training,
validation, and testing. The actual proportion is up to us, but something like 80:10:10
is common.

The training dataset is the set of examples that are presented to the model. The opti‐
mizer uses these examples to tune the weights of the model so as to reduce the error,
or loss, on the training dataset. The loss on the training dataset at the end of training
is not, however, a reliable measure of the performance of the model. To estimate that,
we have to use a dataset of examples that have not been shown to the model during its
training process. That is the purpose of the validation dataset.

If we were training only one model, and training it only once, we would need only
the training and validation datasets (in this case, an 80:20 split is common). However,
it is very likely that we will retry the training with a different set of hyperparameters
—perhaps we will change the learning rate, or decrease the dropout, or add a couple
more layers to the model. The more of these hyperparameters we optimize against
the validation dataset, the more the skill of the model on the validation dataset gets
incorporated into the structure of the model itself. The validation dataset is thus no
longer a reliable estimate of how the model will perform when given net new data.

Our final evaluation (of the model fit on the training dataset, and using parameters
optimized on the validation dataset) is carried out on the test dataset.

Splitting the dataset at the beginning of each training run is not a good idea. If we do
this, every experiment will have different training and validation datasets, which
defeats the purpose of retaining a truly independent test dataset. Instead, we should
split once, and then continue using the same training and validation datasets for all
our hyperparameter tuning experiments. Therefore, we should save the training, vali‐
dation, and test CSV files and use these consistently throughout the model lifecycle.

Sometimes, we might want to do cross-validation on the dataset. To do this, we train
the model multiple times using different splits of the first 90% into training and vali‐
dation datasets (the test dataset remains the same 10%). In such a case, we’d write out
multiple training and validation files. Cross-validation is common on small datasets,

Creating a Dataset | 199

but much less common in machine learning on large datasets such as those used in
image models.

TensorFlow Records
The CSV file format mentioned in the previous section is not recommended for
large-scale machine learning because it relies on storing image data as individual
JPEG files, which is not very efficient. A more efficient data format to use is Tensor‐
Flow Records (TFRecords). We can convert our JPEG image files into TFRecords
using Apache Beam.

First, we define a method to create a TFRecord given the image filename and the label
of the image:

def create_tfrecord(filename, label, label_int):
 img = read_and_decode(filename)
 dims = img.shape
 img = tf.reshape(img, [-1]) # flatten to 1D array
 return tf.train.Example(features=tf.train.Features(feature={
 'image': _float_feature(img),
 'shape': _int64_feature([dims[0], dims[1], dims[2]]),
 'label': _string_feature([label]),
 'label_int': _int64_feature([label_int])
 })).SerializeToString()

The TFRecord is a dictionary with two main keys: image and label. Because different
images can have different sizes, we also take care to store the shape of the original
image. To save time looking up the index of the label during training, we also store
the label as an integer.

Besides efficiency, TFRecords give us the ability to embed image
metadata such as the label, bounding box, and even additional ML
inputs such as the location and timestamp of the image as part of
the data itself. This way, we don’t need to rely on ad hoc mecha‐
nisms such as the file/directory name or external files to encode
metadata.

The image itself is a flattened array of floating-point numbers—for efficiency, we are
doing the JPEG decoding and scaling before writing to the TFRecords. This way, it is
not necessary to redo these operations as we iterate over the training dataset:

def read_and_decode(filename):
 img = tf.io.read_file(filename)
 img = tf.image.decode_jpeg(img, channels=IMG_CHANNELS)
 img = tf.image.convert_image_dtype(img, tf.float32)
 return img

200 | Chapter 5: Creating Vision Datasets

As well as being more efficient, decoding the images and scaling their values to [0, 1]
before writing them out to TFRecords has two other advantages. First, this puts the
data in the exact form required by the image models in TensorFlow Hub (see Chap‐
ter 3). Second, it allows the reading code to use the data without having to know
whether the files were in JPEG or PNG or some other image format.

An equally valid approach is to store the data in the TFRecord as
JPEG bytes, rely on TensorFlow’s decode_image() function to read
the data, and scale the image values to [0, 1] in the preprocessing
layer of the model. Because the JPEG bytes are compressed using
an algorithm tailored for images, the resulting files can be smaller
than gzipped TFRecord files consisting of raw pixel values. Use this
approach if bandwidth is more important than decoding time.
Another benefit of this approach is that the decoding operation is
usually pipelined on the CPU while the model trains on a GPU, so
it might be essentially free.

The Apache Beam pipeline consists of getting the training, validation, and test CSV
files, creating TFRecords, and writing the three datasets with appropriate prefixes.
For example, the training TFRecord files are created using:

with beam.Pipeline() as p:
 (p
 | 'input_df' >> beam.Create(train.values)
 | 'create_tfr' >> beam.Map(lambda x: create_tfrecord(
 x[0], x[1], LABELS.index(x[1])))
 | 'write' >> beam.io.tfrecordio.WriteToTFRecord(
 'output/train', file_name_suffix='.gz')
)

While there are several advantages to decoding and scaling the pixel values before
writing them out to TFRecords, the floating-point pixel data tends to take up more
space than the original byte stream. This drawback is addressed in the preceding code
by compressing the TFRecord files. The TFRecord writer will automatically compress
the output files when we specify that the filename suffix should be .gz.

Running at scale
The previous code is fine for transforming a few images, but when you have thou‐
sands to millions of images, you’ll want a more scalable, resilient solution. The solu‐
tion needs to be fault-tolerant, able to be distributed to multiple machines, and
capable of being monitored using standard DevOps tools. Typically, we’d also want to
pipe the output to a cost-efficient blob storage as new images come streaming in. Ide‐
ally, we’d want this to be done in a serverless way so that we don’t have to manage and
scale up/down this infrastructure ourselves.

Creating a Dataset | 201

One solution that addresses these production needs of resilience, monitoring, stream‐
ing, and autoscaling is to run our Apache Beam code on Google Cloud Dataflow
rather than in a Jupyter notebook:

with beam.Pipeline('DataflowRunner', options=opts) as p:

The options can be obtained from the command line using standard Python con‐
structs (like argparse) and will typically include the Cloud project to be billed and
the Cloud region in which to run the pipeline. Besides Cloud Dataflow, other runners
for Apache Beam include Apache Spark and Apache Flink.

As long as we are creating a pipeline like this, it can be helpful to capture all the steps
of our workflow within it, including the step of splitting the dataset. We can do this as
follows (the full code is in jpeg_to_tfrecord.py on GitHub):

with beam.Pipeline(RUNNER, options=opts) as p:
 splits = (p
 | 'read_csv' >> beam.io.ReadFromText(arguments['all_data'])
 | 'parse_csv' >> beam.Map(lambda line: line.split(','))
 | 'create_tfr' >> beam.Map(lambda x: create_tfrecord(
 x[0], x[1], LABELS.index(x[1])))
 | 'assign_ds' >> beam.Map(assign_record_to_split)
)

where the assign_record_to_split() function assigns each record to one of the
three splits:

def assign_record_to_split(rec):
 rnd = np.random.rand()
 if rnd < 0.8:
 return ('train', rec)
 if rnd < 0.9:
 return ('valid', rec)
 return ('test', rec)

At this point, splits consists of tuples like:

('valid', 'serialized-tfrecord...')

These can then be farmed out into three sets of sharded files with the appropriate
prefixes:

for s in ['train', 'valid', 'test']:
 _ = (splits
 | 'only_{}'.format(s) >> beam.Filter(lambda x: x[0] == s)
 | '{}_records'.format(s) >> beam.Map(lambda x: x[1])
 | 'write_{}'.format(s) >> beam.io.tfrecordio.WriteToTFRecord(
 os.path.join(OUTPUT_DIR, s), file_name_suffix='.gz')
)

When this program is run, the job will be submitted to the Cloud Dataflow service,
which will execute the entire pipeline (see Figure 5-13) and create TFRecord files cor‐
responding to all three splits with names like valid-00000-of-00005.gz.

202 | Chapter 5: Creating Vision Datasets

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/05_create_dataset/jpeg_to_tfrecord.py

Figure 5-13. Running the dataset creation pipeline in Cloud Dataflow.

Balancing Flexibility and Maintainability
Because ML training is so computationally expensive, it can be worth the duplication
in storage to create efficient, ready-to-train-on datasets for your ML projects. There
are two drawbacks, however. First, each of your ML projects will typically involve dif‐
ferent preprocessing steps (more on this in Chapter 6), and creating separate datasets
for each project can lead to increased storage costs. That’s why, in this chapter, we did
something intermediate—while we decoded the JPEG images and scaled them to be
in the range [0, 1], we left them in the original size. Resizing is one of the preprocess‐
ing steps that will be done in the training data pipeline because each ML project will
tend to want to resize the images differently.

The second drawback is that such extracted datasets run the risk of running afoul of
the data governance policies in place at your organization. There might be regulatory
and compliance risks associated with extracting image data from the original data
lake (where presumably all access is logged and monitored, and data is appropriately
aged off) and storing intermediate files or sample metadata, which are potentially
harder to track and might need to be saved in different and less-governed storage
locations (like hard disks of a cluster for fast I/O during the ML process).

Creating a Dataset | 203

Changing the input from CSV files to Cloud pub/sub will convert this pipeline from a
batch pipeline to a streaming one. All the intermediate steps remain the same, and
the resulting sharded TFRecords (which are in a format conducive for machine learn‐
ing) can function as our ML data lake.

TensorFlow Recorder
In the previous sections we looked at how to manually create TFRecord files, carrying
out some extract, transform, load (ETL) operations along the way. If you already have
data in Pandas or CSV files, it may be much more convenient to use the TFRecorder
Python package, which adds a tensorflow.to_tfr() method to a Pandas dataframe:

import pandas as pd
import tfrecorder
csv_file = './all_data_split.csv'
df = pd.read_csv(csv_file, names=['split', 'image_uri', 'label'])
df.tensorflow.to_tfr(output_dir='gs://BUCKET/data/output/path')

The CSV files in this example are assumed to have lines that look like this:

valid,gs://BUCKET/img/abc123.jpg,daisy
train,gs://BUCKET/img/def123.jpg,tulip

TFRecorder will serialize the images into TensorFlow Records.

Running TFRecorder at scale in Cloud Dataflow involves adding a few parameters to
the call:

df.tensorflow.to_tfr(
 output_dir='gs://my/bucket',
 runner='DataflowRunner',
 project='my-project',
 region='us-central1',
 tfrecorder_wheel='/path/to/my/tfrecorder.whl')

For details on how to create and load a wheel to be used, please check the TFRecorder
documentation.

Reading TensorFlow Records
To read TensorFlow Records, use a tf.data.TFRecordDataset. To read all the train‐
ing files into a TensorFlow dataset, we can pattern match and then pass the resulting
files into TFRecordDataset():

train_dataset = tf.data.TFRecordDataset(
 tf.data.Dataset.list_files(
 'gs://practical-ml-vision-book/flowers_tfr/train-*')
)

The full code is in 06a_resizing.ipynb on GitHub, but in a notebook in the folder for
Chapter 6 because that’s when we actually have to read these files.

204 | Chapter 5: Creating Vision Datasets

https://oreil.ly/w7f80
https://oreil.ly/w7f80
https://oreil.ly/1osx7
https://oreil.ly/1osx7
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/06_preprocessing/06a_resizing.ipynb

The dataset at this point contains protobufs. We need to parse the protobufs based on
the schema of the records that we wrote to the files. We specify that schema as
follows:

feature_description = {
 'image': tf.io.VarLenFeature(tf.float32),
 'shape': tf.io.VarLenFeature(tf.int64),
 'label': tf.io.FixedLenFeature([], tf.string,
default_value=''),
 'label_int': tf.io.FixedLenFeature([], tf.int64, default_value=0),
}

Compare this with the code we used to create the TensorFlow Record:

return tf.train.Example(features=tf.train.Features(feature={
 'image': _float_feature(img),
 'shape': _int64_feature([dims[0], dims[1], dims[2]]),
 'label': _string_feature(label),
 'label_int': _int64_feature([label_int])
}))

The label and label_int have a fixed length (1), but the image and its shape are
variable length (since they are arrays).

Given the proto and the feature description (or schema), we can read in the data
using the function parse_single_example():

rec = tf.io.parse_single_example(proto, feature_description)

For storage efficiency, variable-length arrays are stored as sparse tensors (see “What Is
a Sparse Tensor?” on page 206). We can make them dense and reshape the flattened
image array into a 3D tensor, giving us the full parsing function:

def parse_tfr(proto):
 feature_description = ...
 rec = tf.io.parse_single_example(proto, feature_description)
 shape = tf.sparse.to_dense(rec['shape'])
 img = tf.reshape(tf.sparse.to_dense(rec['image']), shape)
 return img, rec['label_int']

We can now apply the parsing function to every proto that is read using map():

train_dataset = tf.data.TFRecordDataset(
 [filename for filename in tf.io.gfile.glob(
 'gs://practical-ml-vision-book/flowers_tfr/train-*')
]).map(parse_tfr)

At this point, the training dataset gives us the image and its label, which we can use
just like the image and label we obtained from the CSV dataset in Chapter 2.

Creating a Dataset | 205

What Is a Sparse Tensor?
A sparse tensor is an efficient representation of tensors that have only a few nonzero
values. If a tensor has many zeros, it is more efficient to store the tensor if we repre‐
sent only the nonzero values. Consider a 2D tensor that has many zeros:

[[0, 0, 3, 0, 0, 0, 0, 5, 0, 0],
 [0, 2, 0, 0, 0, 0, 4, 0, 0, 0]]

Instead of storing this tensor with 10 numbers, we could represent it as follows:

• The nonzero values in the tensor: [3, 5, 2, 4]
• The indices of those nonzero values: [[0, 2], [0, 7], [1, 1], [1, 6]]
• The dense shape of the tensor: (2, 10)

TensorFlow does exactly this: it represents a sparse tensor as three separate dense ten‐
sors, indices, values, and dense_shape. It also supports direct computations on the
sparse tensors, which are more efficient than the equivalent computations on dense
tensors. For example, if we call tf.sparse.maximum() on our example sparse tensor it
will need to iterate through only the values tensor (4 numbers), whereas if we called
tf.math.maximum() it would have to iterate through the full 2D tensor (20 values).

Summary
In this chapter, we looked at how to create vision datasets consisting of images and
the labels associated with those images. The images can be photographs or can be
produced by sensors that create 2D or 3D projections. It is possible to align several
such images into a single image by treating the individual image’s values as channels.

Image labeling often has to be done manually, at least in the beginning stages of a
project. We looked at different types of labels for different problem types, how to
organize the labels, how to efficiently label images, and how to use voting to reduce
errors in the labels. Labels can sometimes be extracted automatically from the even‐
tual outcome, or from ancillary datasets. It is also possible to set up an iterative Noisy
Student process to create pseudo-labels.

We also discussed dataset bias, the causes of bias, and how to lower the chances of
bias in our datasets. We will look at how to diagnose bias in Chapter 8.

Finally, we saw how to create training and validation, test splits of our data, and store
these three image datasets efficiently in a data lake. In the next two chapters, you will
learn how to train ML models on the datasets you created for that purpose. In Chap‐
ter 6, we will explore how to preprocess images for machine learning, and in Chap‐
ter 7 we will discuss how to train ML models on the preprocessed images.

206 | Chapter 5: Creating Vision Datasets

CHAPTER 6

Preprocessing

In Chapter 5, we looked at how to create training datasets for machine learning. This
is the first step of the standard image processing pipeline (see Figure 6-1). The next
stage is preprocessing the raw images in order to feed them into the model for train‐
ing or inference. In this chapter, we will look at why images need to be preprocessed,
how to set up preprocessing to ensure reproducibility in production, and ways to
implement a variety of preprocessing operations in Keras/TensorFlow.

Figure 6-1. Raw images have to be preprocessed before they are fed into the model, both
during training (top) and during prediction (bottom).

207

The code for this chapter is in the 06_preprocessing folder of the
book’s GitHub repository. We will provide file names for code sam‐
ples and notebooks where applicable.

Reasons for Preprocessing
Before raw images can be fed into an image model, they usually have to be prepro‐
cessed. Such preprocessing has several overlapping goals: shape transformation, data
quality, and model quality.

Shape Transformation
The input images typically have to be transformed into a consistent size. For example,
consider a simple DNN model:

model = tf.keras.Sequential([
 tf.keras.layers.Flatten(input_shape=(512, 256, 3)),
 tf.keras.layers.Dense(128,
 activation=tf.keras.activations.relu),
 tf.keras.layers.Dense(len(CLASS_NAMES), activation='softmax')
])

This model requires that the images fed into it are 4D tensors with an inferred batch
size, 512 columns, 256 rows, and 3 channels. Every layer that we have considered so
far in this book needs a shape to be specified at construction. Sometimes the specifi‐
cation can be inferred from previous layers, and does not have to be explicit: the first
Dense layer takes the output of the Flatten layer and therefore is built to have 512 *
256 * 3 = 393,216 input nodes in the network architecture. If the raw image data is
not of this size, then there is no way to map each input value to the nodes of the net‐
work. So, images that are not of the right size have to be transformed into tensors
with this exact shape. Any such transformation will be carried out in the preprocess‐
ing stage.

Data Quality Transformation
Another reason to do preprocessing is to enforce data quality. For example, many sat‐
ellite images have a terminator line (see Figure 6-2) because of solar lighting or the
Earth’s curvature.

Solar lighting can lead to different lighting levels in different parts of the image. Since
the terminator line moves throughout the day and its location is known precisely
from the timestamp, it can be helpful to normalize each pixel value taking into
account the solar illumination that the corresponding point on the Earth receives. Or,
due to the Earth’s curvature and the point of view of the satellite, there might be parts
of the images that were not sensed by the satellite. Such pixels might be masked or

208 | Chapter 6: Preprocessing

https://github.com/GoogleCloudPlatform/practical-ml-vision-book

assigned a value of –inf. In the preprocessing step, it is necessary to handle this
somehow because neural networks will expect to see a finite floating-point value; one
option is to replace these pixels with the mean value in the image.

Figure 6-2. Impact of solar lighting (left) and Earth’s curvature (right). Images from
NASA © Living Earth and the NOAA GOES-16 satellite.

Even if your dataset doesn’t consist of satellite imagery, it’s important to be aware that
data quality problems, like the ones described here for satellite data, pop up in many
situations. For example, if some of your images are darker than others, you might
want to transform the pixel values within the images to have a consistent white
balance.

Improving Model Quality
A third goal of preprocessing is to carry out transformations that help improve the
accuracy of models trained on the data. For example, machine learning optimizers
work best when data values are small numbers. So, in the preprocessing stage, it can
be helpful to scale the pixel values to lie in the range [0, 1] or [–1, 1].

Some transformations can help improve model quality by increasing the effective size
of the dataset that the model was trained on. For example, if you are training a model
to identify different types of animals, an easy way to double the size of your dataset is
to augment it by adding flipped versions of the images. In addition, adding random
perturbations to images results in more robust training as it limits the extent to which
the model overfits.

Of course, we have to be careful when applying left-to-right transformations. If we
are training a model with images that contain a lot of text (such as road signs), aug‐
menting images by flipping them left to right would reduce the ability of the model to
recognize the text. Also, sometimes flipping the images can destroy information that
we require. For example, if we are trying to identify products in a clothing store, flip‐
ping images of buttoned shirts left to right may destroy information. Men’s shirts
have the button on the wearer’s right and the button hole on the wearer’s left, whereas
women’s shirts are the opposite. Flipping the images randomly would make it

Reasons for Preprocessing | 209

impossible for the model to use the position of the buttons to determine the gender
the clothes were designed for.

Size and Resolution
As discussed in the previous section, one of the key reasons to preprocess images is to
ensure that the image tensors have the shape expected by the input layer of the ML
model. In order to do this, we usually have to change the size and/or resolution of the
images being read in.

Consider the flower images that we wrote out into TensorFlow Records in Chapter 5.
As explained in that chapter, we can read those images using:

train_dataset = tf.data.TFRecordDataset(
 [filename for filename in tf.io.gfile.glob(
 'gs://practical-ml-vision-book/flowers_tfr/train-*')
]).map(parse_tfr)

Let’s display five of those images:

for idx, (img, label_int) in enumerate(train_dataset.take(5)):
 print(img.shape)
 ax[idx].imshow((img.numpy()));

As is clear from Figure 6-3, the images all have different sizes. The second image, for
example (240x160), is in portrait mode, whereas the third image (281x500) is hori‐
zontally elongated.

Figure 6-3. Five of the images in the 5-flowers training dataset. Note that they all have
different dimensions (marked on top of the image).

Using Keras Preprocessing Layers
When the input images are of different sizes, we need to preprocess them to the shape
expected by the input layer of the ML model. We did this in Chapter 2 using a
TensorFlow function when we read the images, specifying the desired height and
width:

img = tf.image.resize(img, [IMG_HEIGHT, IMG_WIDTH])

210 | Chapter 6: Preprocessing

Keras has a preprocessing layer called Resizing that offers the same functionality.
Typically we will have multiple preprocessing operations, so we can create a Sequen‐
tial model that contains all of those operations:

preproc_layers = tf.keras.Sequential([
 tf.keras.layers.experimental.preprocessing.Resizing(
 height=IMG_HEIGHT, width=IMG_WIDTH,
 input_shape=(None, None, 3))
])

To apply the preprocessing layer to our images, we could do:

train_dataset.map(lambda img: preproc_layers(img))

However, this won’t work because the train_dataset provides a tuple (img, label)
where the image is a 3D tensor (height, width, channels) while the Keras Sequential
model expects a 4D tensor (batchsize, height, width, channels).

The simplest solution is to write a function that adds an extra dimension to the image
at the first axis using expand_dims() and removes the batch dimension from the
result using squeeze():

def apply_preproc(img, label):
 # add to a batch, call preproc, remove from batch
 x = tf.expand_dims(img, 0)
 x = preproc_layers(x)
 x = tf.squeeze(x, 0)
 return x, label

With this function defined, we can apply the preprocessing layer to our tuple using:

train_dataset.map(apply_preproc)

Normally, we don’t have to call expand_dims() and squeeze() in a
preprocessing function because we apply the preprocessing func‐
tion after a batch() call. For example, we would normally do:

train_dataset.batch(32).map(apply_preproc)

Here, however, we can’t do this because the images that come out of
the train_dataset are all of different sizes. To solve this problem,
we can add an extra dimension as shown or use ragged batches.

The result is shown in Figure 6-4. Notice that all the images are now the same size,
and because we passed in 224 for the IMG_HEIGHT and IMG_WIDTH, the images are
squares. Comparing this with Figure 6-3, we notice that the second image has been
squashed vertically whereas the third image has been squashed in the horizontal
dimension and stretched vertically.

Size and Resolution | 211

https://oreil.ly/LbavM

Figure 6-4. The effect of resizing the images to a shape of (224, 224, 3). Intuitively,
stretching and squashing flowers will make them harder to recognize, so we would like to
preserve the aspect ratio of the input images (the ratio of height to width). Later in this
chapter, we will look at other preprocessing options that can do this.

The Keras Resizing layer offers several interpolation options when doing the squash‐
ing and stretching: bilinear, nearest, bicubic, lanczos3, gaussian, and so on. The
default interpolation scheme (bilinear) retains local structures, whereas the gaus
sian interpolation scheme is more tolerant of noise. In practice, however, the differ‐
ences between different interpolation methods are pretty minor.

The Keras preprocessing layers have an advantage that we will delve deeper into later
in this chapter—because they are part of the model, they are automatically applied
during prediction. Choosing between doing preprocessing in Keras or in TensorFlow
thus often comes down to a trade-off between efficiency and flexibility; we will
expand upon this later in the chapter.

Using the TensorFlow Image Module
In addition to the resize() function that we used in Chapter 2, TensorFlow offers a
plethora of image processing functions in the tf.image module. We used
decode_jpeg() from this module in Chapter 5, but TensorFlow also has the ability to
decode PNG, GIF, and BMP and to convert images between color and grayscale.
There are methods to work with bounding boxes and to adjust contrast, brightness,
and so on.

In the realm of resizing, TensorFlow allows us to retain the aspect ratio when resizing
by cropping the image to the desired aspect ratio and stretching it:

img = tf.image.resize(img, [IMG_HEIGHT, IMG_WIDTH],
 preserve_aspect_ratio=True)

or padding the edges with zeros:

img = tf.image.resize_with_pad(img, [IMG_HEIGHT, IMG_WIDTH])

We can apply this function directly to each (img, label) tuple in the dataset as follows:

212 | Chapter 6: Preprocessing

https://oreil.ly/pUrsF
https://oreil.ly/K8r7W

def apply_preproc(img, label):
 return (tf.image.resize_with_pad(img, 2*IMG_HEIGHT, 2*IMG_WIDTH),
 label)
train_dataset.map(apply_preproc)

The result is shown in Figure 6-5. Note the effect of padding in the second and third
panels in order to avoid stretching or squashing the input images while providing the
desired output size.

Figure 6-5. Resizing the images to (448, 448) with padding.

The eagle-eyed among you may have noticed that we resized the images to be larger
than the desired height and width (twice as large, actually). The reason for this is that
it sets us up for the next step.

While we’ve preserved the aspect ratio by specifying a padding, we now have padded
images with black borders. This is not desirable either. What if we now do a “center
crop”—i.e., crop these images (which are larger than what we want anyway) in the
center?

Mixing Keras and TensorFlow
A center-cropping function is available in TensorFlow, but to keep things interesting,
let’s mix TensorFlow’s resize_with_pad() and Keras’s CenterCrop functionality.

In order to call an arbitrary set of TensorFlow functions as part of a Keras model, we
wrap the function(s) inside a Keras Lambda layer:

tf.keras.layers.Lambda(lambda img:
 tf.image.resize_with_pad(
 img, 2*IMG_HEIGHT, 2*IMG_WIDTH))

Here, because we want to do the resize and follow it by a center crop, our preprocess‐
ing layers become:

preproc_layers = tf.keras.Sequential([
 tf.keras.layers.Lambda(lambda img:
 tf.image.resize_with_pad(
 img, 2*IMG_HEIGHT, 2*IMG_WIDTH),
 input_shape=(None, None, 3)),
 tf.keras.layers.experimental.preprocessing.CenterCrop(
 height=IMG_HEIGHT, width=IMG_WIDTH)
])

Size and Resolution | 213

Note that the first layer (Lambda) carries an input_shape parameter. Because the
input images will be of different sizes, we specify the height and width as None, which
leaves the values to be determined at runtime. However, we do specify that there will
always be three channels.

The result of applying this preprocessing is shown in Figure 6-6. Note how the aspect
ratio of the flowers is preserved and all the images are 224x224.

Figure 6-6. The effect of applying two processing operations: a resize with pad followed
by a center crop.

At this point, you have seen three different places to carry out preprocessing: in
Keras, as a preprocessing layer; in TensorFlow, as part of the tf.data pipeline; and in
Keras, as part of the model itself. As mentioned earlier, choosing between these
comes down to a trade-off between efficiency and flexibility; we’ll explore this in
more detail later in this chapter.

Model Training
Had the input images all been the same size, we could have incorporated the prepro‐
cessing layers into the model itself. However, because the input images vary in size,
they cannot be easily batched. Therefore, we will apply the preprocessing in the ingest
pipeline before doing the batching:

train_dataset = tf.data.TFRecordDataset(
 [filename for filename in tf.io.gfile.glob(
 'gs://practical-ml-vision-book/flowers_tfr/train-*')
]).map(parse_tfr).map(apply_preproc).batch(batch_size)

The model itself is the same MobileNet transfer learning model that we used in Chap‐
ter 3 (the full code is in 06a_resizing.ipynb on GitHub):

layers = [
 hub.KerasLayer(
 "https://tfhub.dev/.../mobilenet_v2/...",
 input_shape=(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS),
 trainable=False,
 name='mobilenet_embedding'),
 tf.keras.layers.Dense(num_hidden,
 activation=tf.keras.activations.relu,
 name='dense_hidden'),

214 | Chapter 6: Preprocessing

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/06_preprocessing/06a_resizing.ipynb

 tf.keras.layers.Dense(len(CLASS_NAMES),
 activation='softmax',
 name='flower_prob')
]
model = tf.keras.Sequential(layers, name='flower_classification')
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=lrate),
 loss=tf.keras.losses.SparseCategoricalCrossentropy(
 from_logits=False),
 metrics=['accuracy'])
history = model.fit(train_dataset, validation_data=eval_dataset, epochs=10)

The model training converges and the validation accuracy plateaus at 0.85 (see
Figure 6-7).

Figure 6-7. The loss and accuracy curves for a MobileNet transfer learning model with
preprocessed layers as input.

Comparing Figure 6-7 against Figure 3-3, it seems that we have fared worse with pad‐
ding and center cropping than with the naive resizing we did in Chapter 3. Even
though the validation datasets are different in the two cases, and so the accuracy
numbers are not directly comparable, the difference in accuracy (0.85 versus 0.9) is
large enough that it is quite likely that the Chapter 6 model is worse than the Chap‐
ter 3 one. Machine learning is an experimental discipline, and we would not have
known this unless we tried. It’s quite possible that on a different dataset, fancier pre‐
processing operations will improve the end result; you have to try multiple options to
figure out which method works best for your dataset.

Some prediction results are shown in Figure 6-8. Note that the input images all have a
natural aspect ratio and are center cropped.

Size and Resolution | 215

1 Reality is more complex. There might be data preprocessing (e.g., data augmentation, covered in the next sec‐
tion) that you would only want to apply during training. Not all data preprocessing needs to be consistent
between training and inference.

Figure 6-8. Images as input to the model, and predictions on those images.

Training-Serving Skew
During inference, we need to carry out the exact same set of operations on the image
that we did during training (see Figure 6-1). Recall that we did preprocessing in three
places:

1. When creating the file. When we wrote out the TensorFlow Records in Chap‐
ter 5, we decoded the JPEG files and scaled the input values to [0, 1].

2. When reading the file. We applied the function parse_tfr() to the training data‐
set. The only preprocessing this function did was to reshape the image tensor to
[height, width, 3], where the height and width are the original size of the image.

3. In the Keras model. We then applied preproc_layers() to the images. In the last
version of this method, we resized the images with padding to 448x448 and then
center cropped them to 224x224.

In the inference pipeline, we have to perform all those operations (decoding, scaling,
reshaping, resizing, center cropping) on the images provided by clients.1 If we were to
miss an operation or carry it out slightly differently between training and inference, it
would cause potentially incorrect results. The condition where the training and infer‐
ence pipelines diverge (therefore creating unexpected or incorrect behavior during
inference not seen during training) is called training-serving skew. In order to prevent
training-serving skew, it is ideal if we can reuse the exact same code both in training
and for inference.

Broadly, there are three ways that we can set things up so that all the image prepro‐
cessing done during training is also done during inference:

216 | Chapter 6: Preprocessing

2 Ideally, all the functions in this class would be private and only the functions create_preproc_dataset() and
create_preproc_image() would be public. Unfortunately, at the time of writing, tf.data’s map functionality
doesn’t handle the name wrangling that would be needed to use private methods as lambdas. The underscore
in the name of the class reminds us that its methods are meant to be private.

• Put the preprocessing in functions that are called from both the training and
inference pipelines.

• Incorporate the preprocessing into the model itself.
• Use tf.transform to create and reuse artifacts.

Let’s look at each of these methods. In each of these cases, we’ll want to refactor the
training pipeline so as to make it easier to reuse all the preprocessing code during
inference. The easier it is to reuse code between training and inference, the more
likely it is that subtle differences won’t crop up and cause training-serving skew.

Reusing Functions
The training pipeline in our case reads TensorFlow Records consisting of already
decoded and scaled JPEG files, whereas the prediction pipeline needs to key off the
path to an individual image file. So, the preprocessing code will not be identical, but
we can still collect all the preprocessing into functions that are reused and put them
in a class that we’ll call _Preprocessor.2 The full code is available in 06b_reuse_func‐
tions.ipynb on GitHub.

The methods of the preprocessor class will be called from two functions, one to create
a dataset from TensorFlow Records and the other to create an individual image from
a JPEG file. The function to create a preprocessed dataset is:

def create_preproc_dataset(pattern):
 preproc = _Preprocessor()
 trainds = tf.data.TFRecordDataset(
 [filename for filename in tf.io.gfile.glob(pattern)]
).map(preproc.read_from_tfr).map(
 lambda img, label: (preproc.preprocess(img), label))
 return trainds

There are three functions of the preprocessor that are being invoked: the constructor,
a way to read TensorFlow Records into an image, and a way to preprocess the image.
The function to create an individual preprocessed image is:

def create_preproc_image(filename):
 preproc = _Preprocessor()
 img = preproc.read_from_jpegfile(filename)
 return preproc.preprocess(img)

Training-Serving Skew | 217

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/06_preprocessing/06b_reuse_functions.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/06_preprocessing/06b_reuse_functions.ipynb

Here too, we are using the constructor and preprocessing method, but we’re using a
different way to read the data. Therefore, the preprocessor will require four methods.

The constructor in Python consists of a method called __init__():

class _Preprocessor:
 def __init__(self):
 self.preproc_layers = tf.keras.Sequential([
 tf.keras.layers.experimental.preprocessing.CenterCrop(
 height=IMG_HEIGHT, width=IMG_WIDTH),
 input_shape=(2*IMG_HEIGHT, 2*IMG_WIDTH, 3)
])

In the __init__() method, we set up the preprocessing layers.

To read from a TFRecord we use the parse_tfr() function from Chapter 5, now a
method of our class:

def read_from_tfr(self, proto):
 feature_description = ... # schema
 rec = tf.io.parse_single_example(
 proto, feature_description
)
 shape = tf.sparse.to_dense(rec['shape'])
 img = tf.reshape(tf.sparse.to_dense(rec['image']), shape)
 label_int = rec['label_int']
 return img, label_int

Preprocessing consists of taking the image, sizing it consistently, putting into a batch,
invoking the preprocessing layers, and unbatching the result:

def preprocess(self, img):
 x = tf.image.resize_with_pad(img, 2*IMG_HEIGHT, 2*IMG_WIDTH)
 # add to a batch, call preproc, remove from batch
 x = tf.expand_dims(x, 0)
 x = self.preproc_layers(x)
 x = tf.squeeze(x, 0)
 return x

When reading from a JPEG file, we take care to do all the steps that were carried out
when the TFRecord files were written out:

def read_from_jpegfile(self, filename):
 # same code as in 05_create_dataset/jpeg_to_tfrecord.py
 img = tf.io.read_file(filename)
 img = tf.image.decode_jpeg(img, channels=IMG_CHANNELS)
 img = tf.image.convert_image_dtype(img, tf.float32)
 return img

Now, the training pipeline can create the training and validation datasets using the
create_preproc_dataset() function that we have defined:

218 | Chapter 6: Preprocessing

train_dataset = create_preproc_dataset(
 'gs://practical-ml-vision-book/flowers_tfr/train-*'
).batch(batch_size)

The prediction code (which will go into a serving function, covered in Chapter 9) will
take advantage of the create_preproc_image() function to read individual JPEG
files and then invoke model.predict().

Preprocessing Within the Model
Note that we did not have to do anything special to reuse the model itself for predic‐
tion. For example, we did not have to write different variations of the layers: the Hub
layer representing MobileNet and the dense layer were all transparently reusable
between training and prediction.

Any preprocessing code that we put into the Keras model will be automatically
applied during prediction. Therefore, let’s take the center-cropping functionality out
of the _Preprocessor class and move it into the model itself (see 06b_reuse_func‐
tions.ipynb on GitHub for the code):

class _Preprocessor:
 def __init__(self):
 # nothing to initialize
 pass

 def read_from_tfr(self, proto):
 # same as before

 def read_from_jpegfile(self, filename):
 # same as before

 def preprocess(self, img):
 return tf.image.resize_with_pad(img, 2*IMG_HEIGHT, 2*IMG_WIDTH)

The CenterCrop layer moves into the Keras model, which now becomes:

layers = [
 tf.keras.layers.experimental.preprocessing.CenterCrop(
 height=IMG_HEIGHT, width=IMG_WIDTH,
 input_shape=(2*IMG_HEIGHT, 2*IMG_WIDTH, IMG_CHANNELS),
),
 hub.KerasLayer(...),
 tf.keras.layers.Dense(...),
 tf.keras.layers.Dense(...)
]

Recall that the first layer of a Sequential model is the one that carries the input_shape
parameter. So, we have removed this parameter from the Hub layer and added it to
the CenterCrop layer. The input to this layer is twice the desired size of the images, so
that’s what we specify.

Training-Serving Skew | 219

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/06_preprocessing/06b_reuse_functions.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/06_preprocessing/06b_reuse_functions.ipynb

The model now includes the CenterCrop layer and its output shape is 224x224, our
desired output shape:

Model: "flower_classification"

Layer (type) Output Shape Param #
===
center_crop (CenterCrop) (None, 224, 224, 3) 0

mobilenet_embedding (KerasLa (None, 1280) 2257984

dense_hidden (Dense) (None, 16) 20496

flower_prob (Dense) (None, 5) 85

Of course, if both the training and prediction pipelines read the same data format, we
could get rid of the preprocessor completely.

Where to Do Preprocessing
Could we not have also moved the resize_with_pad() functionality into the Keras
model to get rid of the _Preprocessor class entirely? Not at the time this section was
being written—Keras models require batched inputs, and it’s much easier to write
models where batches contain elements of the same shape. Because our input images
have different shapes, we need to resize them to something consistent before feeding
them to the Keras model. Ragged tensors, which were experimental at the time of
writing, will make this unnecessary.

How do you choose whether to have the center cropping done in TensorFlow as part
of the tf.data pipeline or as a Keras layer and part of the model? Choosing whether
to carry out a particular bit of preprocessing in the tf.data pipeline or in a Keras
layer comes down to five factors:

Efficiency
If we will always need to carry out center cropping, it is more efficient to have
that be part of the preprocessing pipeline because we will be able to cache the
results, either by writing out already cropped images into the TensorFlow
Records or by adding .cache() to the pipeline. If it’s done in the Keras model,
this preprocessing will have to be carried out during each training iteration.

Experimentation
Having the center cropping as a Keras layer is more flexible. As just one example,
we can choose to experiment with cropping the images at 50% or 70% for differ‐
ent models. We can even treat the cropping ratio as a model hyperparameter.

Maintainability
Any code in a Keras layer is automatically reused in training and inference, so
using Keras layers is less error-prone.

220 | Chapter 6: Preprocessing

https://oreil.ly/INIra

Flexibility
We haven’t discussed this yet, however, when you have operations that need to be
carried out differently in training and inference (for example, the data augmenta‐
tion methods that we will discuss shortly), it is much easier to have those opera‐
tions be within a Keras layer.

Acceleration
Commonly, operations in the tf.data pipeline are carried out on the CPU and
operations in the model function are carried out on the GPU (device placement
can be changed, but this is the usual default). Given this default, having code in
the model function is a way to take advantage of acceleration and distribution
strategies.

Decide where to carry out preprocessing by balancing these considerations. Normally,
you will lay out your preprocessing operations and draw a line of separation, doing
some operations in tf.data and some in the model function.

Note that if you need to preprocess the labels in any way, it’s easier to do this in
tf.data because a Keras Sequential model does not pass the labels through its layers.
If you do need to pass the labels through, you will have to switch to the Keras Func‐
tional API and pass in a dictionary of features, replacing the image component at
each step. See the GAN example in Chapter 12 for an illustration of this approach.

Using tf.transform
What we did in the previous section—writing a _Preprocessor class and expecting to
keep read_from_tfr() and read_from_jpegfile() consistent in terms of the pre‐
processing that is carried out—is hard to enforce. This will be a perennial source of
bugs in your ML pipelines because ML engineering teams tend to keep fiddling
around with preprocessing and data cleanup routines.

For example, suppose we write out already cropped images into TFRecords for effi‐
ciency. How can we ensure that this cropping happens during inference? To mitigate
training-serving skew, it is best if we save all the preprocessing operations in an arti‐
facts registry and automatically apply these operations as part of the serving pipeline.

The TensorFlow library that does this is TensorFlow Transform (tf.transform). To
use tf.transform, we need to:

• Write an Apache Beam pipeline to carry out analysis of the training data, pre‐
compute any statistics needed for the preprocessing (e.g., mean/variance to use
for normalization), and apply the preprocessing.

• Change the training code to read the preprocessed files.
• Change the training code to save the transform function along with the model.

Training-Serving Skew | 221

https://oreil.ly/25SxU

• Change the inference code to apply the saved transform function.

Let’s look at each of these briefly (the full code is available in 06h_tftransform.ipynb
on GitHub).

Writing the Beam pipeline
The Beam pipeline to carry out the preprocessing is similar to the pipeline we used in
Chapter 5 to convert the JPEG files into TensorFlow Records. The difference is that
we use the built-in functionality of TensorFlow Extended (TFX) to create a CSV
reader:

RAW_DATA_SCHEMA = schema_utils.schema_from_feature_spec({
 'filename': tf.io.FixedLenFeature([], tf.string),
 'label': tf.io.FixedLenFeature([], tf.string),
})
csv_tfxio = tfxio.CsvTFXIO(file_pattern='gs://.../all_data.csv'],
 column_names=['filename', 'label'],
 schema=RAW_DATA_SCHEMA)
And we use this class to read the CSV file:
img_records = (p
 | 'read_csv' >> csv_tfxio.BeamSource(batch_size=1)
 | 'img_record' >> beam.Map(
 lambda x: create_input_record(x[0], x[1]))
)

The input record at this point contains the JPEG data read, and a label index, so we
specify this as the schema (see jpeg_to_tfrecord_tft.py) to create the dataset that will
be transformed:

IMG_BYTES_METADATA = tft.tf_metadata.dataset_metadata.DatasetMetadata(
 schema_utils.schema_from_feature_spec({
 'img_bytes': tf.io.FixedLenFeature([], tf.string),
 'label': tf.io.FixedLenFeature([], tf.string),
 'label_int': tf.io.FixedLenFeature([], tf.int64)
 })
)

Transforming the data
To transform the data, we pass in the original data and metadata to a function that we
call tft_preprocess():

raw_dataset = (img_records, IMG_BYTES_METADATA)
transformed_dataset, transform_fn = (
 raw_dataset | 'tft_img' >>
 tft_beam.AnalyzeAndTransformDataset(tft_preprocess)
)

The preprocessing function carries out the resizing operations using TensorFlow
functions:

222 | Chapter 6: Preprocessing

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/06_preprocessing/06h_tftransform.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/06_preprocessing/06h_tftransform.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/06_preprocessing/jpeg_to_tfrecord_tft.py

def tft_preprocess(img_record):
 img = tf.map_fn(decode_image, img_record['img_bytes'],
 fn_output_signature=tf.uint8)
 img = tf.image.convert_image_dtype(img, tf.float32)
 img = tf.image.resize_with_pad(img, IMG_HEIGHT, IMG_WIDTH)
 return {
 'image': img,
 'label': img_record['label'],
 'label_int': img_record['label_int']
 }

Saving the transform
The resulting transformed data is written out as before. In addition, the transforma‐
tion function is written out:

transform_fn | 'write_tft' >> tft_beam.WriteTransformFn(
 os.path.join(OUTPUT_DIR, 'tft'))

This creates a SavedModel that contains all the preprocessing operations that were
carried out on the raw dataset.

Reading the preprocessed data
During training, the transformed records can be read as follows:

def create_dataset(pattern, batch_size):
 return tf.data.experimental.make_batched_features_dataset(
 pattern,
 batch_size=batch_size,
 features = {
 'image': tf.io.FixedLenFeature(
 [IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS], tf.float32),
 'label': tf.io.FixedLenFeature([], tf.string),
 'label_int': tf.io.FixedLenFeature([], tf.int64)
 }
).map(
 lambda x: (x['image'], x['label_int'])
)

These images are already scaled and resized and so can be used directly in the train‐
ing code.

Transformation during serving

We need to make the transformation function artifacts (that were saved using Write
TransformFn()) available to the prediction system. We can do this by ensuring that
the WriteTransformFn() writes the transform artifacts to a Cloud Storage location
that is accessible to the serving system. Alternatively, the training pipeline can copy
over the transform artifacts so that they are available alongside the exported model.

Training-Serving Skew | 223

At prediction time, all the scaling and preprocessing operations are loaded and
applied to the image bytes sent from the client:

preproc = tf.keras.models.load_model(
 '.../tft/transform_fn').signatures['transform_signature']
preprocessed = preproc(img_bytes=tf.convert_to_tensor(img_bytes)...)

We then call model.predict() on the preprocessed data:

pred_label_index = tf.math.argmax(model.predict(preprocessed))

In Chapter 7, we will look at how to write a serving function that does these opera‐
tions on behalf of the client.

Benefits of tf.transform

Note that with tf.transform we have avoided having to make the trade-offs inherent
in either putting preprocessing code in the tf.data pipeline or including it as part of
the model. We now get the best of both approaches—efficient training and transpar‐
ent reuse to prevent training-serving skew:

• The preprocessing (scaling and resizing of input images) happens only once.
• The training pipeline reads already preprocessed images, and is therefore fast.
• The preprocessing functions are stored into a model artifact.
• The serving function can load the model artifact and apply the preprocessing

before invoking the model (details on how are covered shortly).

The serving function doesn’t need to know the details of the transformations, only
where the transform artifacts are stored. A common practice is to copy over these
artifacts to the model output directory as part of the training program, so that they
are available alongside the model itself. If we change the preprocessing code, we sim‐
ply run the preprocessing pipeline again; the model artifact containing the prepro‐
cessing code gets updated, so the correct preprocessing gets applied automatically.

There are other advantages to using tf.transform beyond preventing training-
serving skew. For example, because tf.transform iterates over the entire dataset once
before training has even started, it is possible to use global statistics of the dataset
(e.g., the mean) to scale the values.

Data Augmentation
Preprocessing is useful for more than simply reformatting images to the size and
shape required by the model. Preprocessing can also be a way to improve model qual‐
ity through data augmentation.

224 | Chapter 6: Preprocessing

Data augmentation is a data-space solution to the problem of insufficient data (or
insufficient data of the right kind)—it is a set of techniques that enhance the size and
quality of training datasets with the goal of creating machine learning models that are
more accurate and that generalize better.

Deep learning models have lots of weights, and the more weights there are, the more
data is needed to train the model. If our dataset is too small relative to the size of the
ML model, the model can employ its parameters to memorize the input data, which
results in overfitting (a condition where the model performs well on training data,
but produces poor results on unseen data at inference time).

As a thought experiment, consider an ML model with one million weights. If we have
only 10,000 training images, the model can assign 100 weights to each image, and
these weights can home in on some characteristic of each image that makes it unique
in some way—for example, perhaps this is the only image where there is a bright
patch centered around a specific pixel. The problem is that such an overfit model will
not perform well after it is put into production. The images that the model will be
required to predict will be different from the training images, and the noisy informa‐
tion it has learned won’t be helpful. We need the ML model to generalize from the
training dataset. For that to happen, we need a lot of data, and the larger the model
we want, the more data we need.

Data augmentation techniques involve taking the images in the training dataset and
transforming them to create new training examples. Existing data augmentation
methods fall into three categories:

• Spatial transformation, such as random zooming, cropping, flipping, rotation,
and so on

• Color distortion to change brightness, hue, etc.
• Information dropping, such as random masking or erasing of different parts of

the image

Let’s look at each of these in turn.

Spatial Transformations
In many cases, we can flip or rotate an image without changing its essence. For exam‐
ple, if we are trying to detect types of farm equipment, flipping the images horizon‐
tally (left to right, as shown in the top row of Figure 6-9) would simply simulate the
equipment as seen from the other side. By augmenting the dataset using such image
transformations, we are providing the model with more variety—meaning more
examples of the desired image object or class in varying sizes, spatial locations, orien‐
tations, etc. This will help create a more robust model that can handle these kinds of
variations in real data.

Data Augmentation | 225

Figure 6-9. Some geometric transformations of an image of a tractor in a field. Photo‐
graph by author.

However, flipping the image vertically (top to bottom, as shown on the left side of
Figure 6-9) is not a good idea, for a few reasons. First, the model is not expected to
correctly classify an upside-down image in production, so there is no point in adding
this image to the training dataset. Second, a vertically flipped tractor image makes it
more difficult for the ML model to identify features like the cabin that are not verti‐
cally symmetric. Flipping the image vertically thus both adds an image type that the
model is not required to classify correctly and makes the learning problem tougher.

Make sure that augmenting data makes the training dataset larger,
but does not make the problem more difficult. In general, this is
the case only if the augmented image is typical of the images that
the model is expected to predict on, and not if the augmentation
creates a skewed, unnatural image. Information dropping methods,
discussed shortly, are an exception to this rule.

Keras supports several data augmentation layers, including RandomTranslation, Ran
domRotation, RandomZoom, RandomCrop, RandomFlip, and so on. They all work simi‐
larly.

The RandomFlip layer will, during training, randomly either flip an image or keep it
in its original orientation. During inference, the image is passed through unchanged.

226 | Chapter 6: Preprocessing

https://oreil.ly/8r8Z6

Keras does this automatically; all we have to do is add this as one of the layers in our
model:

tf.keras.layers.experimental.preprocessing.RandomFlip(
 mode='horizontal',
 name='random_lr_flip/none'
)

The mode parameter controls the types of flips that are allowed, with a horizontal
flip being the one that flips the image left to right. Other modes are vertical and
horizontal_and_vertical.

In the previous section, we center cropped the images. When we do a center crop, we
lose a considerable part of the image. To improve our training performance, we could
consider augmenting the data by taking random crops of the desired size from the
input images. The RandomCrop layer in Keras will do random crops during training
(so that the model sees different parts of each image during each epoch, although
some of them will now include the padded edges and may not even include the parts
of the image that are of interest) and behave like a CenterCrop during inference.

The full code for this example is in 06d_augmentation.ipynb on GitHub. Combining
these two operations, our model layers now become:

layers = [
 tf.keras.layers.experimental.preprocessing.RandomCrop(
 height=IMG_HEIGHT//2, width=IMG_WIDTH//2,
 input_shape=(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS),
 name='random/center_crop'
),
 tf.keras.layers.experimental.preprocessing.RandomFlip(
 mode='horizontal',
 name='random_lr_flip/none'
),
 hub.KerasLayer(
 "https://tfhub.dev/.../mobilenet_v2/...",
 trainable=False,
 name='mobilenet_embedding'),
 tf.keras.layers.Dense(
 num_hidden,
 kernel_regularizer=regularizer,
 activation=tf.keras.activations.relu,
 name='dense_hidden'),
 tf.keras.layers.Dense(
 len(CLASS_NAMES),
 kernel_regularizer=regularizer,
 activation='softmax',
 name='flower_prob')
]

And the model itself becomes:

Data Augmentation | 227

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/06_preprocessing/06d_augmentation.ipynb

Model: "flower_classification"

Layer (type) Output Shape Param #
===
random/center_crop (RandomCr (None, 224, 224, 3) 0

random_lr_flip/none (RandomF (None, 224, 224, 3) 0

mobilenet_embedding (KerasLa (None, 1280) 2257984

dense_hidden (Dense) (None, 16) 20496

flower_prob (Dense) (None, 5) 85

Training this model is similar to training without augmentation. However, we will
need to train the model longer whenever we augment data—intuitively, we need to
train for twice as many epochs in order for the model to see both flips of the image.
The result is shown in Figure 6-10.

Figure 6-10. The loss and accuracy curves for a MobileNet transfer learning model with
data augmentation. Compare to Figure 6-7.

Comparing Figure 6-10 with Figure 6-7, we notice how much more resilient the
model training has become with the addition of data augmentation. Note that the
training and validation loss are pretty much in sync, as are the training and validation
accuracies. The accuracy, at 0.86, is only slightly better than before (0.85); the impor‐
tant thing is that we can be more confident about this accuracy because of the much
better behaved training curves.

By adding data augmentation, we have dramatically lowered the extent of overfitting.

228 | Chapter 6: Preprocessing

3 RandomContrast was added between the time this section was written and when the book went to press.

Color Distortion
It’s important to not limit yourself to the set of augmentation layers that are readily
available. Think instead about what kinds of variations of the images the model is
likely to encounter in production. For example, it is likely that photographs provided
to an ML model (especially if these are photographs by amateur photographers) will
vary quite considerably in terms of lighting. We can therefore increase the effective
size of the training dataset and make the ML model more resilient if we augment the
data by randomly changing the brightness, contrast, saturation, etc. of the training
images. While Keras has several built-in data augmentation layers (like RandomFlip),
it doesn’t currently support changing the contrast3 and brightness. So, let’s implement
this ourselves.

We’ll create a data augmentation layer from scratch that will randomly change the
contrast and brightness of an image. The class will inherit from the Keras Layer class
and take two arguments, the ranges within which to adjust the contrast and the
brightness (the full code is in 06e_colordistortion.ipynb on GitHub):

class RandomColorDistortion(tf.keras.layers.Layer):
 def __init__(self, contrast_range=[0.5, 1.5],
 brightness_delta=[-0.2, 0.2], **kwargs):
 super(RandomColorDistortion, self).__init__(**kwargs)
 self.contrast_range = contrast_range
 self.brightness_delta = brightness_delta

When invoked, this layer will need to behave differently depending on whether it is in
training mode or not. If not in training mode, the layer will simply return the original
images. If it is in training mode, it will generate two random numbers, one to adjust
the contrast within the image and the other to adjust the brightness. The actual
adjustment is carried out using methods available in the tf.image module:

 def call(self, images, training=False):
 if not training:
 return images

 contrast = np.random.uniform(
 self.contrast_range[0], self.contrast_range[1])
 brightness = np.random.uniform(
 self.brightness_delta[0], self.brightness_delta[1])

 images = tf.image.adjust_contrast(images, contrast)
 images = tf.image.adjust_brightness(images, brightness)
 images = tf.clip_by_value(images, 0, 1)
 return images

Data Augmentation | 229

https://oreil.ly/ZX7QN
https://oreil.ly/818dT
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/06_preprocessing/06e_colordistortion.ipynb

It’s important that the implementation of the custom augmentation
layer consists of TensorFlow functions so that these functions can
be implemented efficiently on a GPU. See Chapter 7 for recom‐
mendations on writing efficient data pipelines.

The effect of this layer on a few training images is shown in Figure 6-11. Note that the
images have different contrast and brightness levels. By invoking this layer many
times on each input image (once per epoch), we ensure that the model gets to see
many color variations of the original training images.

Figure 6-11. Random contrast and brightness adjustment on three of the training
images. The original images are shown in the first panel of each row, and four generated
images are shown in the other panels. If you’re looking at grayscale images, please refer
to 06e_colordistortion.ipynb on GitHub to see the effect of the color distortion.

The layer itself can be inserted into the model after the RandomFlip layer:

layers = [
 ...
 tf.keras.layers.experimental.preprocessing.RandomFlip(
 mode='horizontal',
 name='random_lr_flip/none'
),
 RandomColorDistortion(name='random_contrast_brightness/none'),
 hub.KerasLayer ...
]

230 | Chapter 6: Preprocessing

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/06_preprocessing/06e_colordistortion.ipynb

The full model will then have this structure:

Model: "flower_classification"

Layer (type) Output Shape Param #
===
random/center_crop (RandomCr (None, 224, 224, 3) 0

random_lr_flip/none (RandomF (None, 224, 224, 3) 0

random_contrast_brightness/n (None, 224, 224, 3) 0

mobilenet_embedding (KerasLa (None, 1280) 2257984

dense_hidden (Dense) (None, 16) 20496

flower_prob (Dense) (None, 5) 85
===
Total params: 2,278,565
Trainable params: 20,581
Non-trainable params: 2,257,984

Training of the model remains identical. The result is shown in Figure 6-12. We get
better accuracy than with just geometric augmentation (0.88 instead of 0.86) and the
training and validation curves remain totally in sync, indicating that overfitting is
under control.

Figure 6-12. The loss and accuracy curves for a MobileNet transfer learning model with
geometric and color augmentation. Compare to Figure 6-7 and 6-10.

Data Augmentation | 231

Information Dropping
Recent research highlights some new ideas in data augmentation that involve making
more dramatic changes to the images. These techniques drop information from the
images in order to make the training process more resilient and to help the model
attend to the important features of the images. They include:

Cutout
Randomly mask out square regions of input during training. This helps the
model learn to disregard uninformative parts of the image (such as the sky) and
attend to the discriminative parts (such as the petals).

Mixup
Linearly interpolate a pair of training images and assign as their label the corre‐
sponding interpolated label value.

CutMix
A combination of cutout and mixup. Cut patches from different training images
and mix the ground truth labels proportionally to the area of the patches.

GridMask
Delete uniformly distributed square regions while controlling the density and
size of the deleted regions. The underlying assumption is that images are inten‐
tionally collected—uniformly distributed square regions tend to be the
background.

Cutout and GridMask involve preprocessing operations on a single image and can be
implemented similar to how we implemented the color distortion. Open source code
for cutout and GridMask is available on GitHub.

Mixup and CutMix, however, use information from multiple training images to cre‐
ate synthetic images that may bear no resemblance to reality. In this section we’ll look
at how to implement mixup, since it is simpler. The full code is in 06f_mixup.ipynb on
GitHub.

The idea behind mixup is to linearly interpolate a pair of training images and their
labels. We can’t do this in a Keras custom layer because the layer only receives images;
it doesn’t get the labels. Therefore, let’s implement a function that receives a batch of
images and labels and does the mixup:

def augment_mixup(img, label):
 # parameters
 fracn = np.rint(MIXUP_FRAC * len(img)).astype(np.int32)
 wt = np.random.uniform(0.5, 0.8)

In this code, we have defined two parameters: fracn and wt. Instead of mixing up all
the images in the batch, we will mix up a fraction of them (by default, 0.4) and keep
the remaining images (and labels) as they are. The parameter fracn is the number of

232 | Chapter 6: Preprocessing

https://arxiv.org/abs/1708.04552
https://arxiv.org/abs/1710.09412
https://arxiv.org/abs/1905.04899
https://arxiv.org/pdf/2001.04086.pdf
https://oreil.ly/fGHK6
https://oreil.ly/3tzFk
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/06_preprocessing/06f_mixup.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/06_preprocessing/06f_mixup.ipynb

images in the batch that we have to mix up. In the function we will also choose a
weighting factor, wt, of between 0.1 and 0.4 to interpolate the pair of images.

To interpolate, we need pairs of images. The first set of images will be the first fracn
images in the batch:

img1, label1 = img[:fracn], label[:fracn]

How about the second image in each pair? We’ll do something quite simple: we’ll pick
the next image, so that the first image gets interpolated with the second, the second
with the third, and so on. Now that we have the pairs of images/labels, interpolating
can be done as follows:

def _interpolate(b1, b2, wt):
 return wt*b1 + (1-wt)*b2
interp_img = _interpolate(img1, img2, wt)
interp_label = _interpolate(label1, label2, wt)

The results are shown in Figure 6-13. The top row is the original batch of five images.
The bottom row is the result of mixup: 40% of 5 is 2, so the first two images are the
ones that are mixed up, and the last three images are left as-is. The first mixed-up
image is obtained by interpolating the first and second original images, with a weight
of 0.63 to the first and 0.37 to the second. The second mixed-up image is obtained by
mixing up the second and third images from the top row. Note that the labels (the
array above each image) show the impact of the mixup as well.

img2, label2 = img[1:fracn+1], label[1:fracn+1] # offset by one

Figure 6-13. The results of mixup on a batch of five images and their labels. The original
images are in the top row, and the first two images (40% of the batch) in the bottom row
are the ones that are mixed up.

Data Augmentation | 233

At this point, we have fracn interpolated images built from the first fracn+1 images
(we need fracn+1 images to get fracn pairs, since the fracnth image is interpolated
with the fracn+1th one). We then stack the interpolated images and the remaining
unaltered images to get back a batch_size of images:

img = tf.concat([interp_img, img[fracn:]], axis=0)
label = tf.concat([interp_label, label[fracn:]], axis=0)

The augment_mixup() method can be passed into the tf.data pipeline that is used to
create the training dataset:

train_dataset = create_preproc_dataset(...) \
 .shuffle(8 * batch_size) \
 .batch(batch_size, drop_remainder=True) \
 .map(augment_mixup)

There are a couple of things to notice in this code. First, we have added a shuffle()
step to ensure that the batches are different in each epoch (otherwise, we won’t get
any variety in our mixup). We ask tf.data to drop any leftover items in the last
batch, because computation of the parameter n could run into problems on very
small batches. Because of the shuffle, we’ll be dropping different items each time, so
we’re not too bothered about this.

shuffle() works by reading records into a buffer, shuffling the
records in the buffer, and then providing the records to the next
step of the data pipeline. Because we want the records in a batch to
be different during each epoch, we will need the size of the shuffle
buffer to be much larger than the batch size—shuffling the records
within a batch won’t suffice. Hence, we use:

.shuffle(8 * batch_size)

Interpolating labels is not possible if we keep the labels as sparse integers (e.g., 4 for
tulips). Instead, we have to one-hot encode the labels (see Figure 6-13). Therefore, we
make two changes to our training program. First, our read_from_tfr() method does
the one-hot encoding instead of simply returning label_int:

def read_from_tfr(self, proto):
 ...
 rec = tf.io.parse_single_example(
 proto, feature_description
)
 shape = tf.sparse.to_dense(rec['shape'])
 img = tf.reshape(tf.sparse.to_dense(rec['image']), shape)
 label_int = rec['label_int']
 return img, tf.one_hot(label_int, len(CLASS_NAMES))

Second, we change the loss function from SparseCategoricalCrossentropy() to
CategoricalCrossentropy() since the labels are now one-hot encoded:

234 | Chapter 6: Preprocessing

model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=lrate),
 loss=tf.keras.losses.CategoricalCrossentropy(
 from_logits=False),
 metrics=['accuracy'])

On the 5-flowers dataset, mixup doesn’t improve the performance of the model—we
got the same accuracy (0.88, see Figure 6-14) with mixup as without it. However, it
might help in other situations. Recall that information dropping helps the model
learn to disregard uninformative parts of the image and mixup works by linearly
interpolating pairs of training images. So, information dropping via mixup would
work well in situations where only a small section of the image is informative, and
where the pixel intensity is informative—think, for example, of remotely sensed
imagery where we are trying to identify deforested patches of land.

Figure 6-14. The loss and accuracy curves for a MobileNet transfer learning model with
mixup. Compare to Figure 6-12.

Interestingly, the validation accuracy and loss are now better than the training accu‐
racy. This is logical when we recognize that the training dataset is “harder” than the
validation dataset—there are no mixed-up images in the validation set.

Forming Input Images
The preprocessing operations we have looked at so far are one-to-one, in that they
simply modify the input image and provide a single image to the model for every
image that is input. This is not necessary, however. Sometimes, it can be helpful to use
the preprocessing pipeline to break down each input into multiple images that are
then fed to the model for training and inference (see Figure 6-15).

Forming Input Images | 235

Figure 6-15. Breaking down a single input into component images that are used to train
the model. The operation used to break an input into its component images during train‐
ing also has to be repeated during inference.

One method of forming the images that are input to a model is tiling. Tiling is useful
in any field where we have extremely large images and where predictions can be car‐
ried out on parts of the large image and then assembled. This tends to be the case for
geospatial imagery (identifying deforested areas), medical images (identifying cancer‐
ous tissue), and surveillance (identifying liquid spills on a factory floor).

Imagine that we have a remotely sensed image of the Earth and would like to identify
forest fires (see Figure 6-16). To do this, a machine learning model would have to
predict whether an individual pixel contains a forest fire or not. The input to such a
model would be a tile, the part of the original image immediately surrounding the
pixel to be predicted. We can preprocess geospatial images to yield equal-sized tiles
that are used to train ML models and obtain predictions from them.

Figure 6-16. Remotely sensed image of wildfires in California. Image courtesy of NOAA.

For each of the tiles, we’ll need a label that signifies whether or not there is fire within
the tile. To create these labels, we can take fire locations called in by fire lookout tow‐
ers and map them to an image the size of the remotely sensed image (the full code is
in 06g_tiling.ipynb on GitHub):

fire_label = np.zeros((338, 600))
for loc in fire_locations:
 fire_label[loc[0]][loc[1]] = 1.0

236 | Chapter 6: Preprocessing

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/06_preprocessing/06g_tiling.ipynb

To generate the tiles, we will extract patches of the desired tile size and stride forward
by half the tile height and width (so that the tiles overlap):

tiles = tf.image.extract_patches(
 images=images,
 sizes=[1, TILE_HT, TILE_WD, 1],
 strides=[1, TILE_HT//2, TILE_WD//2, 1],
 rates=[1, 1, 1, 1],
 padding='VALID')

The result, after a few reshaping operations, is shown in Figure 6-17. In this figure,
we are also annotating each tile by its label. The label for an image tile is obtained by
looking for the maximum value within the corresponding label tile (this will be 1.0 if
the tile contains a fire_location point):

labels = tile_image(labels)
labels = tf.reduce_max(labels, axis=[1, 2, 3])

Figure 6-17. Tiles generated from a remotely sensed image of wildfires in California.
Tiles with fire are labeled “Fire.” Image courtesy of NOAA.

These tiles and their labels can now be used to train an image classification model. By
reducing the stride by which we generate tiles, we can augment the training dataset.

Summary
In this chapter, we looked at various reasons why the preprocessing of images is
needed. It could be to reformat and reshape the input data into the data type and
shape required by the model, or to improve the data quality by carrying out opera‐
tions such as scaling and clipping. Another reason to do preprocessing is to perform
data augmentation, which is a set of techniques to increase the accuracy and

Summary | 237

resilience of a model by generating new training examples from the existing training
dataset. We also looked at how to implement each of these types of preprocessing,
both as Keras layers and by wrapping TensorFlow operations into Keras layers.

In the next chapter, we will delve into the training loop itself.

238 | Chapter 6: Preprocessing

CHAPTER 7

Training Pipeline

The stage after preprocessing is model training, during which the machine learning
model will read in the training data and use that data to adjust its weights (see
Figure 7-1). After training, the model is saved or exported so that it can be deployed.

Figure 7-1. In the model training process, the ML model is trained on preprocessed data
and then exported for deployment. The exported model is used to make predictions.

In this chapter, we will look at ways to make the ingestion of training (and validation)
data into the model more efficient. We will take advantage of time slicing between the
different computational devices (CPUs and GPUs) available to us, and examine how
to make the whole process more resilient and reproducible.

239

The code for this chapter is in the 07_training folder of the book’s
GitHub repository. We will provide file names for code samples
and notebooks where applicable.

Efficient Ingestion
A significant part of the time it takes to train machine learning models is spent on
ingesting data—reading it and transforming it into a form that is usable by the model.
The more we can do to streamline and speed up this stage of the training pipeline, the
more efficient we can be. We can do this by:

Storing data efficiently
We should preprocess the input images as much as possible, and store the pre‐
processed values in a way that is efficient to read.

Parallelizing the reading of data
When ingesting data, the speed of storage devices tends to be a bottleneck. Dif‐
ferent files may be stored on different disks, or can be read via different network
connections, so it is often possible to parallelize the reading of data.

Preparing images in parallel with training
If we can preprocess the images on the CPU in parallel with training on the GPU,
we should do so.

Maximizing GPU utilization
As much as possible, we should try to carry out matrix and mathematical opera‐
tions on the GPU, since it is many orders of magnitude faster than a CPU. If any
of our preprocessing operations involve these operations, we should push them
to the GPU.

Let’s look at each of these ideas in more detail.

Storing Data Efficiently
Storing images as individual JPEG files is not very efficient from a machine learning
perspective. In Chapter 5, we discussed how to convert JPEG images into TensorFlow
Records. In this section, we will explain why TFRecords are an efficient storage
mechanism, and consider trade-offs between flexibility and efficiency in terms of the
amount of preprocessing that is carried out before the data is written out.

TensorFlow Records
Why store images as TensorFlow Records? Let’s consider what we’re looking for in a
file format.

240 | Chapter 7: Training Pipeline

https://github.com/GoogleCloudPlatform/practical-ml-vision-book

We know that we are going to be reading these images in batches, so it will be best if
we can read an entire batch of images using a single network connection rather than
open up one connection per file. Reading a batch all at once will also provide greater
throughput to our machine learning pipeline and minimize the amount of time the
GPU is waiting for the next batch of images.

Ideally, we would like the files to be around 10–100 MB in size. This allows us to bal‐
ance the ability to read the images from multiple workers (one for every GPU) and
the need to have each file open long enough to amortize the latency of reading the
first byte over many batches.

Also, we would like the file format to be such that bytes read from the file can be
mapped immediately to an in-memory structure without the need to parse the file or
handle storage layout differences (such as endianness) between different types of
machines.

The file format that meets all these criteria is TensorFlow Records. We can store the
image data for training, validation, and testing into separate TFRecord files, and
shard the files at around 100 MB each. Apache Beam has a handy TFRecord writer
that we used in Chapter 5.

Storing preprocessed data
We can improve the performance of our training pipeline if we don’t have to do the
preprocessing in the training loop. We might be able to carry out the desired prepro‐
cessing on the JPEG images and then write out the preprocessed data rather than the
raw data.

In practice, we will have to split the preprocessing operations between the ETL pipe‐
line that creates the TensorFlow Records and the model code itself. Why not do it all
in the ETL pipeline or all in the model code? The reason is that preprocessing opera‐
tions applied in the ETL pipeline are done only once instead of in each epoch of the
model training. However, there will always be preprocessing operations that are spe‐
cific to the model that we are training or that need to be different during each epoch.
These cannot be done in the ETL pipeline—they must be done in the training code.

In Chapter 5, we decoded our JPEG files, scaled them to lie between [0, 1], flattened
out the array, and wrote the flattened array out to TensorFlow Records:

def create_tfrecord(filename, label, label_int):
 img = tf.io.read_file(filename)
 img = tf.image.decode_jpeg(img, channels=IMG_CHANNELS)
 img = tf.image.convert_image_dtype(img, tf.float32)
 img = tf.reshape(img, [-1]) # flatten to 1D array
 return tf.train.Example(features=tf.train.Features(feature={
 'image': _float_feature(img),
 ...
 })).SerializeToString()

Efficient Ingestion | 241

The operations that we did before writing the TensorFlow Records were chosen
explicitly.

We could have done less if we’d wanted—we could have simply read the JPEG files
and written out the contents of each file as a string into the TensorFlow Records:

def create_tfrecord(filename, label, label_int):
 img = tf.io.read_file(filename)
 return tf.train.Example(features=tf.train.Features(feature={
 'image': _bytes_feature(img),
 ...
 })).SerializeToString()

Had we been concerned about potentially different file formats (JPEG, PNG, etc.) or
image formats not understood by TensorFlow, we could have decoded each image,
converted the pixel values into a common format, and written out the compressed
JPEG as a string.

We could also have done much more. For example, we could have created an embed‐
ding of the images and written out not the image data, but only the embeddings:

embedding_encoder = tf.keras.Sequential([
 hub.KerasLayer(
 "https://tfhub.dev/.../mobilenet_v2/...",
 trainable=False,
 input_shape=(256, 256, IMG_CHANNELS),
 name='mobilenet_embedding'),
])

def create_tfrecord(filename, label, label_int):
 img = tf.io.read_file(filename)
 img = tf.image.decode_jpeg(img, channels=IMG_CHANNELS)
 img = tf.image.convert_image_dtype(img, tf.float32)
 img = tf.resize(img, [256, 256, 3])
 embed = embedding_encoder(filename)
 embed = tf.reshape(embed, [-1]) # flatten to 1D array
 return tf.train.Example(features=tf.train.Features(feature={
 'image_embedding': _float_feature(embed),
 ...
 })).SerializeToString()

The choice of what operations to perform comes down to a trade-off between effi‐
ciency and reusability. It’s also affected by what types of reusability we envision.
Remember that ML model training is a highly iterative, experimental process. Each
training experiment will iterate over the training dataset multiple times (specified by
the number of epochs). Therefore, each TFRecord in the training dataset will have to
be processed multiple times. The more of the processing we can carry out before
writing the TFRecords, the less processing has to be carried out in the training pipe‐
line itself. This will result in faster and more efficient training and higher data
throughput. This advantage is multiplied manyfold because we normally do not just

242 | Chapter 7: Training Pipeline

train a model once; we run multiple experiments with multiple hyperparameters. On
the other hand, we have to make sure that the preprocessing that we are carrying out
is desirable for all the ML models that we want to train using this dataset—the more
preprocessing we do, the less reusable our dataset might become. We should also not
enter the realm of micro-optimizations that improve speed minimally but make the
code much less clear or reusable.

If we write out the image embeddings (rather than the pixel values) to TensorFlow
Records, the training pipeline will be hugely efficient since the embedding computa‐
tion typically involves passing the image through one hundred or more neural net‐
work layers. The efficiency gains can be considerable. However, this presupposes that
we will be doing transfer learning. We cannot train an image model from scratch
using this dataset. Of course, storage being much less expensive than compute, we
might also find that it is advantageous to create two datasets, one of the embeddings
and the other of the pixel values.

Because TensorFlow Records can vary in terms of how much preprocessing has been
carried out, it is a good practice to document this in the form of metadata. Explain
what data is present in the records, and how that data was generated. General-
purpose tools like Google Cloud Data Catalog, Collibra, and Informatica can help
here, as can custom ML frameworks like the Feast feature store.

Reading Data in Parallel
Another way to improve the efficiency of ingesting data into the training pipeline is
to read the records in parallel. In Chapter 6, we read the written-out TFRecords and
preprocessed them using:

preproc = _Preprocessor()
trainds = tf.data.TFRecordDataset(pattern)
 .map(preproc.read_from_tfr)
 .map(_preproc_img_label)

In this code, we are doing three things:

1. Creating a TFRecordDataset from a pattern
2. Passing each record in the files to read_from_tfr(), which returns an (img,

label) tuple
3. Preprocessing the tuples using _preproc_img_label()

Parallelizing
There are a couple of improvements that we can make to our code, assuming that we
are running on a machine with more than one virtual CPU (most modern machines

Efficient Ingestion | 243

https://oreil.ly/T2W2N
https://oreil.ly/MZNaZ
https://oreil.ly/MsFaX
https://oreil.ly/t3Rh2

have at least two vCPUs, often more). First, we can ask TensorFlow to automatically
interleave reading when we create the dataset:

tf.data.TFRecordDataset(pattern, num_parallel_reads=AUTO)

Second, the two map() operations can be parallelized using:

.map(preproc.read_from_tfr, num_parallel_calls=AUTOTUNE)

Measuring performance
In order to measure the performance impact of these changes, we need to go through
the dataset and carry out some mathematical operations. Let’s compute the mean of
all the images. To prevent TensorFlow from optimizing away any calculations (see the
following sidebar), we’ll compute the mean only of pixels that are above some ran‐
dom threshold that is different in each iteration of the loop:

def loop_through_dataset(ds, nepochs):
 lowest_mean = tf.constant(1.)
 for epoch in range(nepochs):
 thresh = np.random.uniform(0.3, 0.7) # random threshold
 ...
 for (img, label) in ds:
 ...
 mean = tf.reduce_mean(tf.where(img > thresh, img, 0))
 ...

Measuring Performance Impacts
When carrying out measurements of performance, we have to make sure that the
optimizer doesn’t realize that our code is unnecessary to compute. For example, in the
following code, the optimizer would realize that we are not using the mean at all and
simply optimize away the calculations:

for iter in range(100):
 mean = tf.reduce_mean(img)

One way to prevent this is to use the mean somehow. For example, we can find the
lowest mean found in the loop and make sure to print or return it:

 lowest_mean = tf.constant(1.)
for iter in range(100):
 mean = tf.reduce_mean(img)
 lowest_mean = mean if mean < lowest_mean
return(lowest_mean)

However, the optimizer is capable of recognizing that img doesn’t change and that
reduce_mean() will return the same value, so it will get moved out of the loop. That’s
why we are adding a random threshold to our code.

244 | Chapter 7: Training Pipeline

Table 7-1 shows the result of measuring the performance of the preceding loop when
ingesting the first 10 TFRecord files using different mechanisms. It is clear that while
the additional parallelization increases the overall CPU time, the actual wall-clock
time reduces with each bout of parallelization. We get a 35% reduction in the time
spent by making the maps parallel and by interleaving two datasets.

Table 7-1. Time taken to loop through a small dataset when the ingestion is done in different
ways

Method CPU time Wall time
Plain 7.53 s 7.99 s
Parallel map 8.30 s 5.94 s
Interleave 8.60 s 5.47 s
Interleave + parallel map 8.44 s 5.23 s

Will this performance gain carry over to machine learning models? To test this, we
can try training a simple linear classification model instead of using the
loop_through_dataset() function:

def train_simple_model(ds, nepochs):
 model = tf.keras.Sequential([
 tf.keras.layers.Flatten(
 input_shape=(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS)),
 tf.keras.layers.Dense(len(CLASS_NAMES), activation='softmax')
])
 model.compile(optimizer=tf.keras.optimizers.Adam(),
 loss=tf.keras.losses.SparseCategoricalCrossentropy(
 from_logits=False),
 metrics=['accuracy'])
 model.fit(ds, epochs=nepochs)

The result, shown in Table 7-2, illustrates that the performance gains do hold up—we
get a 25% speedup between the first and last rows. As the complexity of the model
increases, the I/O plays a smaller and smaller role in the overall timing, so it makes
sense that the improvement is less.

Table 7-2. Time taken to train a linear ML model on a small dataset when the ingestion is
done in different ways

Method CPU time Wall time
Plain 9.91 s 9.39 s
Parallel map 10.7 s 8.17 s
Interleave 10.5 s 7.54 s
Interleave + parallel map 10.3 s 7.17 s

Efficient Ingestion | 245

Looping through a dataset is faster than training an actual ML model on the full
training dataset. Use it as a lightweight way to exercise your ingestion code for the
purposes of tuning the performance of the I/O part.

Maximizing GPU Utilization
Because GPUs are more efficient at doing machine learning model operations, our
goal should be to maximize their utilization. If we rent GPUs by the hour (as we do in
a public cloud), maximizing GPU utilization will allow us to take advantage of their
increased efficiency to get an overall lower cost per training run than we would get if
we were to train on CPUs.

There are three factors that will affect our model’s performance:

1. Every time we move data between the CPU and the GPU, that transfer takes time.
2. GPUs are efficient at matrix math. The more operations we do on single items,

the less we are taking advantage of the performance speedup offered by a GPU.
3. GPUs have limited memory.

These factors play a role in the optimizations that we can do to improve the perfor‐
mance of our training loop. In this section, we will look at three core ideas in maxi‐
mizing GPU utilization: efficient data handling, vectorization, and staying in the
graph.

Efficient data handling
When we are training our model on a GPU, the CPU will be idle while the GPU is
calculating gradients and doing weight updates.

It can be helpful to give the CPU something to do—we can ask it to prefetch the data,
so that the next batch of data is ready to pass to the GPU:

ds = create_preproc_dataset(
 'gs://practical-ml-vision-book/flowers_tfr/train' + PATTERN_SUFFIX
).prefetch(AUTOTUNE)

If we have a small dataset, especially one where the images or TensorFlow Records
have to be read across a network, it can also be helpful to cache them locally:

ds = create_preproc_dataset(
 'gs://practical-ml-vision-book/flowers_tfr/train' + PATTERN_SUFFIX
).cache()

Table 7-3 shows the impact of prefetching and caching on how long it takes to train a
model.

246 | Chapter 7: Training Pipeline

Table 7-3. Time taken to train a linear ML model on a small dataset when the input records
are prefetched and/or cached

Method CPU time Wall time
Interleave + parallel 9.68 s 6.37 s
Cache 6.16 s 4.36 s
Prefetch + cache 5.76 s 4.04 s

In our experience, caching tends to work only for small (toy) data‐
sets. For large datasets, you are likely to run out of local storage.

Vectorization
Because GPUs are good at matrix manipulation, we should attempt to give the GPU
the maximum amount of data it can handle at one time. Instead of passing images
one at a time, we should send in a batch of images—this is called vectorization.

To batch records, we can do:

ds = create_preproc_dataset(
 'gs://practical-ml-vision-book/flowers_tfr/train' + PATTERN_SUFFIX
).prefetch(AUTOTUNE).batch(32)

It’s important to realize the entire Keras model operates on batches. Therefore, the
RandomFlip and RandomColorDistortion preprocessing layers that we added do not
process one image at a time; they process batches of images.

The larger the batch size is, the faster the training loop will be able to get through an
epoch. There are diminishing returns, however, to increasing the batch size. Also,
there is a limit imposed by the memory limit of the GPU. It’s worth doing a cost–ben‐
efit analysis of using larger, more expensive machines with more GPU memory and
training for a shorter period of time versus using smaller, less expensive machines
and training for longer.

When training on Google’s Vertex AI, GPU memory usage and uti‐
lization are automatically reported for every job. Azure allows you
to configure containers for GPU monitoring. Amazon CloudWatch
provides GPU monitoring on AWS. If you are managing your own
infrastructure, use GPU tools like nvidia-smi or AMD System
Monitor. You can use these to diagnose how effectively your GPUs
are being used, and whether there is headroom in GPU memory to
increase your batch size.

Efficient Ingestion | 247

https://oreil.ly/J2dhk
https://oreil.ly/bSEhN
https://oreil.ly/PIaLQ
https://oreil.ly/PIaLQ

In Table 7-4, we show the impact of changing the batch size on a linear model. Larger
batches are faster, but there are diminishing returns and we’ll run out of on-board
GPU memory beyond a certain point. The faster performance with increasing batch
size is one of the reasons why TPUs, with their large on-board memory and intercon‐
nected cores that share the memory, are so cost-effective.

Table 7-4. Time taken to train a linear ML model at different batch sizes

Method CPU time Wall time
Batch size 1 11.4 s 8.09 s
Batch size 8 9.56 s 6.90 s
Batch size 16 9.90 s 6.70 s
Batch size 32 9.68 s 6.37 s

A key reason that we implemented the random flip, color distortion, and other pre‐
processing and data augmentation steps as Keras layers in Chapter 6 has to do with
batching. We could have done the color distortion using a map() as follows:

trainds = tf.data.TFRecordDataset(
 [filename for filename in tf.io.gfile.glob(pattern)]
).map(preproc.read_from_tfr).map(_preproc_img_label
).map(color_distort).batch(32)

where color_distort() is:

def color_distort(image, label):
 contrast = np.random.uniform(0.5, 1.5)
 brightness = np.random.uniform(-0.2, 0.2)
 image = tf.image.adjust_contrast(image, contrast)
 image = tf.image.adjust_brightness(image, brightness)
 image = tf.clip_by_value(image, 0, 1)
 return image, label

But this would have been inefficient since the training pipeline would have to do
color distortion one image at a time. It is much more efficient if we carry out prepro‐
cessing operations in Keras layers. This way, the preprocessing is done on the whole
batch in one step. An alternative would be to vectorize the color distortion operation
by writing the code as:

).batch(32).map(color_distort)

This would also cause the color distortion to happen on a batch of data. Best practice,
however, is to write preprocessing code that follows the batch() operation in a Keras
layer. There are two reasons for this. First, the separation between ingestion code and
model code is cleaner and more maintainable if we consistently make the call to
batch() a hard boundary. Second, keeping preprocessing in a Keras layer (see Chap‐
ter 6) makes it easier to reproduce the preprocessing functionality in the inference
pipeline since all the model layers are automatically exported.

248 | Chapter 7: Training Pipeline

Staying in the graph
Because executing mathematical functions is much more efficient on a GPU than on
a CPU, TensorFlow reads the data using the CPU, transfers the data to the GPU, then
runs all our code that belongs to the tf.data pipeline (the code in the map() calls, for
example) on the GPU. It also runs all the code in the Keras model layers on the GPU.
Since we are sending the data directly from the tf.data pipeline to the Keras input
layer, there is no need to transfer the data—the data stays within the TensorFlow
graph. The data and model weights all remain in the GPU memory.

This means that we have to be extremely careful to make sure that we don’t do any‐
thing that would involve moving the data out of the TensorFlow graph once the CPU
has delivered the data to the GPU. Data transfers carry extra overhead, and any code
executed on the CPU will tend to be slower.

Iteration. As an example, suppose we are reading a satellite image of California wild‐
fires and wish to apply a specific formula based on photometry to the RGB pixel val‐
ues to transform them into a single “grayscale” image (see Figure 7-2 and the full code
in 07b_gpumax.ipynb on GitHub):

def to_grayscale(img):
 rows, cols, _ = img.shape
 result = np.zeros([rows, cols], dtype=np.float32)
 for row in range(rows):
 for col in range(cols):
 red = img[row][col][0]
 green = img[row][col][1]
 blue = img[row][col][2]
 c_linear = 0.2126 * red + 0.7152 * green + 0.0722 * blue
 if c_linear > 0.0031308:
 result[row][col] = 1.055 * pow(c_linear, 1/2.4) - 0.055
 else:
 result[row][col] = 12.92 * c_linear
 return result

There are three problems with this function:

• It needs to iterate through the image pixels:
rows, cols, _ = img.shape
 for row in range(rows):
 for col in range(cols):

• It needs to read individual pixel values:
green = img[row][col][1]

• It needs to change output pixel values:
result[row][col] = 12.92 * c_linear

Efficient Ingestion | 249

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/07_training/07b_gpumax.ipynb

Figure 7-2. Top: original images with three channels. Bottom: transformed images with
only one channel. Image of wildfires in California courtesy of NOAA.

These operations cannot be done in the TensorFlow graph. Therefore, to call the
function, we need to bring it out of the graph using .numpy(), do the transformation,
and then push the result back into the graph as a tensor (gray is converted into a ten‐
sor for the reduce_mean() operation).

Using tf.py_function() to Call Pure Python Code
There are times when we will have to invoke pure Python functionality from our
TensorFlow programs. Maybe we have to do some time zone conversions and we
need access to the pytz library, or maybe we get some data in JSON format and we
need to invoke json.loads().

In order to drop out of the TensorFlow graph, run a Python function, and get its
result back into the TensorFlow graph, use tf.py_function():

def to_grayscale(img):
 return tf.py_function(to_grayscale_numpy, [img],
 tf.float32)

Now, to_grayscale() can be used as if it were implemented using TensorFlow
operations:

ds = tf.data.TextLineDataset(...).map(to_grayscale)

There are three parameters to py_function(): the name of the function to wrap, the
input tensor(s), and the output type. In our case, the wrapped function will be:

250 | Chapter 7: Training Pipeline

def to_grayscale_numpy(img):
 # The conversion from a tensor happens here.
 img = img.numpy()
 rows, cols, _ = img.shape
 result = np.zeros([rows, cols], dtype=np.float32)
 ...
 # The conversion back happens here.
 return tf.convert_to_tensor(result)

Note that we are still calling numpy() to bring the img tensor out of the graph, so that
we can iterate through it, and we are taking the result (a numpy array) and converting
it to a tensor so that it can be used in the remainder of the TensorFlow code.

Using py_function() is merely a way to call out to Python functions from Tensor‐
Flow. It does not do any optimizations or acceleration.

Slicing and conditionals. We can avoid the explicit iteration and pixel-wise read/write
by using TensorFlow’s slicing functionality:

def to_grayscale(img):
 # TensorFlow slicing functionality
 red = img[:, :, 0]
 green = img[:, :, 1]
 blue = img[:, :, 2]
 c_linear = 0.2126 * red + 0.7152 * green + 0.0722 * blue

Note that the last line of this code snippet is actually operating on tensors (red is a
tensor, not a scalar) and uses operator overloading (the + is actually tf.add()) to
invoke TensorFlow functions.

But how do we do the if statement in the original?

if c_linear > 0.0031308:
 result[row][col] = 1.055 * pow(c_linear, 1 / 2.4) - 0.055
else:
 result[row][col] = 12.92 * c_linear

The if statement assumes that c_linear is a single floating-point value, whereas now
c_linear is a 2D tensor.

To push a conditional statement into the graph and avoid setting pixel values individ‐
ually, we can use tf.cond() and/or tf.where():

gray = tf.where(c_linear > 0.0031308,
 1.055 * tf.pow(c_linear, 1 / 2.4) - 0.055,
 12.92 * c_linear)

One key thing to realize is that all the three parameters to tf.where() in this example
are actually 2D tensors. Note also the use of tf.pow() rather than pow(). Given the
choice between tf.cond() and tf.where(), use tf.where() as it is faster.

Efficient Ingestion | 251

This results in a more than 10x speedup.

Matrix math. The computation of c_linear can be optimized further. This is what we
had:

red = img[:, :, 0]
green = img[:, :, 1]
blue = img[:, :, 2]
c_linear = 0.2126 * red + 0.7152 * green + 0.0722 * blue

If we look carefully at this calculation, we’ll see that we don’t need the slicing. Instead,
we can write the computation as a matrix multiplication if we take the constants and
put them into a 3x1 tensor:

def to_grayscale(img):
 wt = tf.constant([[0.2126], [0.7152], [0.0722]]) # 3x1 matrix
 c_linear = tf.matmul(img, wt) # (ht,wd,3) x (3x1) -> (ht, wd)
 gray = tf.where(c_linear > 0.0031308,
 1.055 * tf.pow(c_linear, 1 / 2.4) - 0.055,
 12.92 * c_linear)
 return gray

With this optimization, we get an additional 4x speedup.

Batching. Once we have written the calculation of c_linear using matrix math, we
also realize that we don’t need to process the data one image at a time. We can process
a batch of images all at once. We can do the calculations on a batch of images using
either a custom Keras layer or a Lambda layer.

Let’s wrap the grayscale calculation into the call() statement of a custom Keras layer:

class Grayscale(tf.keras.layers.Layer):
 def __init__(self, **kwargs):
 super(Grayscale, self).__init__(kwargs)

 def call(self, img):
 wt = tf.constant([[0.2126], [0.7152], [0.0722]]) # 3x1 matrix
 c_linear = tf.matmul(img, wt) #(N, ht,wd,3)x(3x1)->(N, ht, wd)
 gray = tf.where(c_linear > 0.0031308,
 1.055 * tf.pow(c_linear, 1 / 2.4) - 0.055,
 12.92 * c_linear)
 return gray # (N, ht, wd)

An important thing to note is that the input matrix is now a 4D tensor, with the first
dimension being the batch size. The result is therefore a 3D tensor.

Clients calling this code can compute the mean of each image to get back a 1D tensor
of means:

tf.keras.layers.Lambda(lambda gray: tf.reduce_mean(gray, axis=[1, 2]))

252 | Chapter 7: Training Pipeline

We can combine these two layers into a Keras model, or prepend them to an existing
model:

preproc_model = tf.keras.Sequential([
 Grayscale(input_shape=(336, 600, 3)),
 tf.keras.layers.Lambda(lambda gray: tf.reduce_mean(
 gray, axis=[1, 2])) # note axis change
])

The timings of all the methods we discussed in this section are shown in Table 7-5.

Table 7-5. Time taken when the grayscale computation is carried out in different ways

Method CPU time Wall time
Iterate 39.6 s 41.1 s
Pyfunc 39.7 s 41.1 s
Slicing 4.44 s 3.07 s
Matmul 1.22 s 2.29 s
Batch 1.11 s 2.13 s

Saving Model State
So far in this book, we have been training a model and then using the trained model
to immediately make a few predictions. This is highly unrealistic—we will want to
train our model, and then keep the trained model around to continue making predic‐
tions with it. We will need to save the model’s state so that we can quickly read in the
trained model (its structure and its final weights) whenever we want.

We will want to save the model not just to predict from it, but also to resume training.
Imagine that we have trained a model on one million images and are carrying out
predictions with that model. If a month later we receive one thousand new images, it
would be good to continue the training of the original model for a few steps with the
new images instead of training from scratch. This is called fine-tuning (and was dis‐
cussed in Chapter 3).

So, there are two reasons to save model state:

• To make inferences from the model
• To resume training

What these two use cases require are quite different. It’s easiest to understand the dif‐
ference between the two use cases if we consider the RandomColorDistortion data
augmentation layer that is part of our model. For the purposes of inference, this layer
can be removed completely. However, in order to resume training, we may need to
know the full state of the layer (consider, for example, that we lower the amount of
distortion the longer we train).

Saving Model State | 253

Saving the model for inference is called exporting the model. Saving the model in
order to resume training is called checkpointing. Checkpoints are much larger in size
than exports because they include a lot more internal state.

Exporting the Model
To export a trained Keras model, use the save() method:

os.mkdir('export')
model.save('export/flowers_model')

The output directory will contain a protobuf file called saved_model.pb (which is why
this format is often referred to as the TensorFlow SavedModel format), the variable
weights, and any assets such as vocabulary files that the model needs for prediction.

An alternative to SavedModel is Open Neural Network Exchange
(ONNX), an open source, framework-agnostic ML model format
that was introduced by Microsoft and Facebook. You can use the
tf2onnx tool to convert a TensorFlow model to ONNX.

Invoking the model
We can interrogate the contents of a SavedModel using the command-line tool
saved_model_cli that comes with TensorFlow:

saved_model_cli show --tag_set all --dir export/flowers_model

This shows us that the prediction signature (see the following sidebar) is:

inputs['random/center_crop_input'] tensor_info:
 dtype: DT_FLOAT
 shape: (-1, 448, 448, 3)
 name: serving_default_random/center_crop_input:0

The given SavedModel SignatureDef contains the following output(s):

outputs['flower_prob'] tensor_info:
 dtype: DT_FLOAT
 shape: (-1, 5)
 name: StatefulPartitionedCall:0
Method name is: tensorflow/serving/predict

Signature of a TensorFlow Function
The signature of a function is the name of the function, the parameters it takes, and
what it returns. The typical Python function is written to be polymorphic (i.e., applica‐
ble to values of different types). For example, this will work when a and b are floats as
well as when they are both strings:

254 | Chapter 7: Training Pipeline

https://oreil.ly/ZXkFo

def myfunc(a, b):
 return (a + b)

This is because Python is an interpreted (as opposed to a compiled) language—the
code gets executed when it’s called, and at runtime, the interpreter knows whether
you are passing it floats or strings. Indeed, when we inspect the signature of this func‐
tion using Python’s reflection capability:

from inspect import signature
print(signature(myfunc).parameters)
print(signature(myfunc).return_annotation)

we get back simply:

OrderedDict([('a', <Parameter "a">), ('b', <Parameter "b">)])
<class 'inspect._empty'>

meaning the parameters can be of any type and the return type is unknown.

It is possible to provide type hints to Python3 by explicitly specifying the input and
output types:

def myfunc(a: int, b: float) -> float:
 return (a + b)

Note that these type hints are not checked by the runtime—it is still possible to pass
strings to this function. The type hints are meant for use by code editors and linting
tools. However, Python’s reflection capability does read the type hints and tell us more
details about the signature:

OrderedDict([('a', <Parameter "a: int">), ('b', <Parameter "b: float">)])
<class 'float'>

While this is nice, type hints are not sufficient for TensorFlow programs. We also
need to specify the shapes of tensors. We do that by adding an annotation to our
function:

@tf.function(input_signature=[
 tf.TensorSpec([3,5], name='a'),
 tf.TensorSpec([5,8], name='b')
])
def myfunc(a, b):
 return (tf.matmul(a,b))

The @tf.function annotation auto-graphs the function by walking through it and
figures out the shape and type of the output tensor. We can examine the information
that TensorFlow now has about the signature by calling get_concrete_function()
and passing in an eager tensor (a tensor that is immediately evaluated):

print(myfunc.get_concrete_function(tf.ones((3,5)), tf.ones((5,8))))

This results in:

ConcreteFunction myfunc(a, b)
 Args:

Saving Model State | 255

 a: float32 Tensor, shape=(3, 5)
 b: float32 Tensor, shape=(5, 8)
 Returns:
 float32 Tensor, shape=(3, 8)

Note that the full signature includes the name of the function (myfunc), the parame‐
ters (a, b), the parameter types (float32), the parameter shapes ((3, 5) and (5,
8)), and the output tensor’s type and shape.

Therefore, to invoke this model we can load it and call the predict() method, pass‐
ing in a 4D tensor with the shape [num_examples, 448, 448, 3], where num_exam‐
ples is the number of examples we want to predict on at once:

serving_model = tf.keras.models.load_model('export/flowers_model')
img = create_preproc_image('../dandelion/9818247_e2eac18894.jpg')
batch_image = tf.reshape(img, [1, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS])
batch_pred = serving_model.predict(batch_image)

The result is a 2D tensor with the shape [num_examples, 5] which represents the
probability for each type of flower. We can look for the maximum of these probabili‐
ties to obtain the prediction:

pred = batch_pred[0]
pred_label_index = tf.math.argmax(pred).numpy()
pred_label = CLASS_NAMES[pred_label_index]
prob = pred[pred_label_index]

All this is still highly unrealistic, however. Do we really expect that a client who needs
the prediction for an image will know enough to do the reshape(), argmax(), and so
on? We need to provide a much simpler signature for our model to be usable.

Usable signature
A more usable signature for our model is one that doesn’t expose all the internal
details of the training (such as the size of the images the model was trained on).

What kind of signature would be easiest for a client to use? Instead of asking them to
send us a tensor with the image contents, we can simply ask them for a JPEG file. And
instead of returning a tensor of logits, we can send back easy-to-understand informa‐
tion extracted from the logits (the full code is in 07c_export.ipynb on GitHub):

@tf.function(input_signature=[tf.TensorSpec([None,], dtype=tf.string)])
def predict_flower_type(filenames):
 ...
 return {
 'probability': top_prob,
 'flower_type_int': pred_label_index,
 'flower_type_str': pred_label
 }

256 | Chapter 7: Training Pipeline

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/07_training/07c_export.ipynb

Note that while we are at it, we might as well make the function more efficient—we
can take a batch of filenames and do the predictions for all the images at once. Vecto‐
rizing brings efficiency gains at prediction time as well, not just during training!

Given a list of filenames, we can get the input images using:

input_images = [create_preproc_image(f) for f in filenames]

However, this involves iterating through the list of filenames and moving data back
and forth from accelerated TensorFlow code to unaccelerated Python code. If we have
a tensor of filenames, we can achieve the effect of iteration while keeping all the data
in the TensorFlow graph by using tf.map_fn(). With that, our prediction function
becomes:

input_images = tf.map_fn(
 create_preproc_image,
 filenames,
 fn_output_signature=tf.float32
)

Next, we invoke the model to get the full probability matrix:

batch_pred = model(input_images)

We then find the maximum probability and the index of the maximum probability:

top_prob = tf.math.reduce_max(batch_pred, axis=1)
pred_label_index = tf.math.argmax(batch_pred, axis=1)

Note that we are being careful to specify the axis as 1 (axis=0 is the batch dimen‐
sion) when finding the maximum probability and the argmax. Finally, where in
Python we could simply do:

pred_label = CLASS_NAMES[pred_label_index]

the TensorFlow in-graph version is to use tf.gather():

pred_label = tf.gather(params=tf.convert_to_tensor(CLASS_NAMES),
 indices=pred_label_index)

This code converts the CLASS_NAMES array into a tensor and then indexes into it using
the pred_label_index tensor. The resulting values are stored in the pred_label
tensor.

You can often replace Python iterations by tf.map_fn() and defer‐
ence arrays (read the nth element of an array) by using
tf.gather(), as we have done here. Slicing using the [:, :, 0] syntax
is very useful as well. The difference between tf.gather() and
slicing is that tf.gather() can take a tensor as the index, whereas
slices are constants. In really complex situations,
tf.dynamic_stitch() can come in handy.

Saving Model State | 257

Using the signature
With the signature defined, we can specify our new signature as the serving default:

model.save('export/flowers_model',
 signatures={
 'serving_default': predict_flower_type
 })

Note that the API allows us to have multiple signatures in the model—this is useful if
we want to add versioning to our signature, or support different signatures for differ‐
ent clients. We will explore this further in Chapter 9.

With the model exported, the client code to do a prediction now becomes simplicity
itself:

serving_fn = tf.keras.models.load_model('export/flowers_model'
).signatures['serving_default']
filenames = [
 'gs://.../9818247_e2eac18894.jpg',
 ...
 'gs://.../8713397358_0505cc0176_n.jpg'
]
pred = serving_fn(tf.convert_to_tensor(filenames))

The result is a dictionary and can be used as follows:

print(pred['flower_type_str'].numpy().decode('utf-8'))

A few input images and their predictions are shown in Figure 7-3. The point to note
is that the images are all different sizes. The client doesn’t need to know any of the
internal details of the model in order to invoke it. It’s also worth noting that the
“string” type in TensorFlow is only an array of bytes. We have to pass these bytes into
a UTF-8 decoder to get proper strings.

Figure 7-3. Model predictions on a few images.

Checkpointing
So far, we have focused on how to export the model for inference. Now, let’s look at
how to save the model in order to resume training. Checkpointing is typically done
not only at the end of training, but also in the middle of training. There are two rea‐
sons for this:

258 | Chapter 7: Training Pipeline

• It might be helpful to go back and select the model at the point where the valida‐
tion accuracy is highest. Recall that the training loss keeps decreasing the longer
we train, but at some epoch, the validation loss starts to rise because of overfit‐
ting. When we observe that, we have to pick the checkpoint of the previous
epoch because it had the lowest validation error.

• Machine learning on production datasets can take several hours to several days.
The chances that a machine will crash during such a long time period are
uncomfortably high. Therefore, it’s a good idea to have periodic backups so that
we can resume training from an intermediate point rather than starting from
scratch.

Checkpointing is implemented in Keras by means of callbacks—functionality that is
invoked during the training loop by virtue of being passed in as a parameter to the
model.fit() function:

model_checkpoint_cb = tf.keras.callbacks.ModelCheckpoint(
 filepath='./chkpts',
 monitor='val_accuracy', mode='max',
 save_best_only=True)
history = model.fit(train_dataset,
 validation_data=eval_dataset,
 epochs=NUM_EPOCHS,
 callbacks=[model_checkpoint_cb])

Here, we are setting up the callback to overwrite a previous checkpoint if the current
validation accuracy is higher.

While we are doing this, we might as well set up early stopping—even if we initially
start out thinking that we need to train for 20 epochs, we can stop the training once
the validation error hasn’t improved for 2 consecutive epochs (specified by the
patience parameter):

early_stopping_cb = tf.keras.callbacks.EarlyStopping(
 monitor='val_accuracy', mode='max',
 patience=2)

The callbacks list now becomes:

callbacks=[model_checkpoint_cb, early_stopping_cb]

When we train using these callbacks, training stops after eight epochs, as shown in
Figure 7-4.

Saving Model State | 259

Figure 7-4. With early stopping, model training stops once the validation accuracy no
longer increases.

To start from the last checkpoint in the output directory, call:

model.load_weights(checkpoint_path)

Full fault resilience is provided by the BackupAndRestore callback which, at the time
of writing, was experimental.

Distribution Strategy
To distribute processing among multiple threads, accelerators, or machines, we need
to parallelize it. We have looked at how to parallelize the ingestion. However, our
Keras model is not parallelized; it runs on only one processor. How do we run our
model code on multiple processors?

To distribute the model training, we need to set up a distribution strategy. There are
several available, but they’re all used in a similar way—you first create a strategy using
its constructor, then create the Keras model within the scope of that strategy (here,
we’re using MirroredStrategy):

strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
 layers = [
 ...
]
 model = tf.keras.Sequential(layers)
model.compile(...)
history = model.fit(...)

260 | Chapter 7: Training Pipeline

https://oreil.ly/JD3a1

What is MirroredStrategy? What other strategies are available, and how do we
choose between them? We will answer each of these questions in the next sections.

What device does the code run on? All TensorFlow instructions
that create trainable variables (such as Keras models or layers) must
be created within the strategy.scope(), with the exception of
model.compile(). You can call the compile() method wherever
you want. Even though this method technically creates variables
such as optimizer slots, it has been implemented to use the same
strategy as the model. Also, you can create your ingestion
(tf.data) pipeline wherever you want. It will always run on the
CPU and it will always distribute data to workers appropriately.

Choosing a Strategy
Image ML models tend to be deep, and the input data is dense. For such models,
there are three contending distribution strategies:

MirroredStrategy

Makes mirrors of the model structure on each of the available GPUs. Each weight
in the model is mirrored across all the replicas and kept in sync through identical
updates that happen at the end of each batch. Use MirroredStrategy whenever
you have a single machine, whether that machine has one GPU or multiple
GPUs. This way, your code will require no changes when you attach a second
GPU.

MultiWorkerMirroredStrategy

Extends the MirroredStrategy idea to GPUs spread across multiple machines.
In order to get the multiple workers communicating, you need to set up the
TF_CONFIG variable correctly—we recommend using a public cloud service (such
as Vertex Training) where this is automatically done for you.

TPUStrategy

Runs the training job on TPUs, which are specialized application-specific inte‐
grated chips (ASICs) that are custom-designed for machine learning workloads.
TPUs get their speedup through a custom matrix multiplication unit, high-speed
on-board networking to connect up to thousands of TPU cores, and a large
shared memory. They are available commercially only on Google Cloud Plat‐
form. Colab offers free TPUs with some limitations, and Google Research pro‐
vides academic researchers access to TPUs through the TensorFlow Research
Cloud program.

All three of these strategies are forms of data parallelism, where each batch is split
among the workers, and then an all-reduce operation is carried out. Other available

Distribution Strategy | 261

https://oreil.ly/m2U4N
https://oreil.ly/m2U4N
https://oreil.ly/qdEOw
https://oreil.ly/qdEOw
https://oreil.ly/0Zhcg

distribution strategies, like CentralStorage and ParameterServer, are designed for
sparse/massive examples and are not a good fit for image models where an individual
image is dense and small.

We recommend maximizing the number of GPUs on a single
machine with MirroredStrategy before moving on to multiple
workers with MultiWorkerMirroredStrategy (more on this in the
following section). TPUs are usually more cost-effective than
GPUs, especially when you move to larger batch sizes. The current
trend in GPUs (such as with the 16xA100) is to provide multiple
powerful GPUs on a single machine so as to make this strategy
work for more and more models.

Creating the Strategy
In this section, we will cover the specifics of the three strategies commonly used to
distribute the training of image models.

MirroredStrategy

To create a MirroredStrategy instance, we can simply call its constructor (the full
code is in 07d_distribute.ipynb on GitHub):

def create_strategy():
 return tf.distribute.MirroredStrategy()

To verify whether we are running on a machine with GPUs set up, we can use:

if (tf.test.is_built_with_cuda() and
 len(tf.config.experimental.list_physical_devices("GPU")) > 1)

This is not a requirement; MirroredStrategy will work on a machine with only
CPUs.

Starting a Jupyter notebook on a machine with two GPUs and using MirroredStrat
egy, we see an immediate speedup. Where an epoch took about 100 s to process on a
CPU, and 55 s on a single GPU, it takes only 29 s when we have two GPUs.

When training in a distributed manner, you must make sure to increase the batch
size. This is because a batch is split between the GPUs, so if a single GPU has the
resources to process a batch size of 32, two GPUs will be able to easily handle 64.
Here, 64 is the global batch size, and each of the two GPUs will have a local batch size
of 32. Larger batch sizes are typically associated with better behaved training curves.
We will experiment with different batch sizes in “Hyperparameter tuning” on page
42.

262 | Chapter 7: Training Pipeline

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/07_training/07d_distribute.ipynb

Sometimes, it is helpful for consistency and for debugging pur‐
poses to have a strategy even if you are not distributing the training
code or using GPUs. In such cases, use OneDeviceStrategy:

tf.distribute.OneDeviceStrategy('/cpu:0')

MultiWorkerMirroredStrategy

To create a MultiWorkerMirroredStrategy instance, we can again simply call its
constructor:

def create_strategy():
 return tf.distribute.MultiWorkerMirroredStrategy()

To verify that the TF_CONFIG environment variable is set up correctly, we can use:

tf_config = json.loads(os.environ["TF_CONFIG"])

and check the resulting config.

If we use a managed ML training system like Google’s Vertex AI or Amazon Sage‐
Maker, these infrastructure details will be taken care of for us.

When using multiple workers, there are two details that we need to take care of: shuf‐
fling and virtual epochs.

Shuffling. When all the devices (CPUs, GPUs) are on the same machine, each batch
of training examples is split among the different device workers and the resulting gra‐
dient updates are made synchronously—each device worker returns its gradient, the
gradients are averaged across the device workers, and the computed weight update is
sent back to the device workers for the next step.

When the devices are spread among multiple machines, having the central loop wait
for all the workers on every machine to finish with a batch will lead to significant
wastage of compute resources, as all the workers will have to wait for the slowest one.
Instead, the idea is to have workers process data in parallel and for gradient updates
to be averaged if they are available—a late-arriving gradient update is simply dropped
from the calculation. Each worker receives the weight update that is current as of this
time.

When we apply gradient updates asynchronously like this, we cannot split a batch
across the different workers because then our batches would be incomplete, and our
model will want equal-sized batches. So, we will have to have each worker reading full
batches of data, computing the gradient, and sending in a gradient update for each
full batch. If we do that, there is no use having all the workers reading the same data
—we want every worker’s batches to contain different examples. By shuffling the
dataset, we can ensure that the workers are all working on different training examples
at any point in time.

Distribution Strategy | 263

Even if we are not doing distributed training, it’s a good idea to randomize the order
in which the data is read by the tf.data pipeline. This will help reduce the chances
that, say, one batch contains all daisies and the next batch contains all tulips. Such bad
batches can play havoc with the gradient descent optimizer.

We can randomize the data that is read in two places:

• When we obtain the files that match the pattern, we shuffle these files:
files = [filename for filename
 # shuffle so that workers see different orders
 in tf.random.shuffle(tf.io.gfile.glob(pattern))
]

• After we preprocess the data, and just before we batch, we shuffle the records
within a buffer that is larger than the batch size:

trainds = (trainds
 .shuffle(8 * batch_size) # Shuffle for distribution ...
 .map(preproc.read_from_tfr, num_parallel_calls=AUTOTUNE)
 .map(_preproc_img_label, num_parallel_calls=AUTOTUNE)
 .prefetch(AUTOTUNE)
)

• The more ordered your dataset is, the larger your shuffle buffer needs to be. If
your dataset is initially sorted by label, only a buffer size covering the entire data‐
set will work. In that case, it’s better to shuffle the data ahead of time, when pre‐
paring the training dataset.

Virtual epochs. We often wish to train for a fixed number of training examples, not a
fixed number of epochs. Since the number of training steps in an epoch depends on
the batch size, it is easier to key off the total number of training examples in the data‐
set and compute what the number of steps per epoch ought to be:

num_steps_per_epoch = None
if (num_training_examples > 0):
 num_steps_per_epoch = (num_training_examples // batch_size)

We call a training cycle consisting of this number of steps a virtual epoch and train for
the same number of epochs as before.

We specify the number of steps per virtual epoch as a parameter to model.fit():

history = model.fit(train_dataset,
 validation_data=eval_dataset,
 epochs=num_epochs,
 steps_per_epoch=num_steps_per_epoch))

What if we get the number of training examples in the dataset wrong? Suppose we
specify the number as 4,000, but there are actually 3,500 examples? We will have a
problem, because the dataset will finish before 4,000 examples are encountered. We

264 | Chapter 7: Training Pipeline

can prevent that from happening by making the training dataset repeat upon itself
indefinitely:

if (num_training_examples > 0):
 train_dataset = train_dataset.repeat()

This also works when we underestimate the number of training examples in the data‐
set—the next set of examples simply carry over to the next epoch. Keras knows that
when a dataset is infinite, it should use the number of steps per epoch to decide when
the next epoch starts.

TPUStrategy

While MirroredStrategy is meant for one or more GPUs on a single machine, and
MultiWorkerMirroredStrategy is meant for GPUs on multiple machines, TPUStrat
egy allows us to distribute to a custom ASIC chip called the TPU, shown in
Figure 7-5.

Figure 7-5. A tensor processing unit.

To create a TPUStrategy instance, we can call its constructor, but we have to pass a
parameter to this constructor:

tpu = tf.distribute.cluster_resolver.TPUClusterResolver().connect()
return tf.distribute.TPUStrategy(tpu)

Because TPUs are multiuser machines, the initialization will wipe out the existing
memory on the TPU, so we have to make sure to initialize the TPU system before we
do any work in our program.

In addition, we add an extra parameter to model.compile():

model.compile(steps_per_execution=32)

This parameter instructs Keras to send multiple batches to the TPU at once. In addi‐
tion to lowering communication overhead, this gives the compiler the opportunity to

Distribution Strategy | 265

optimize TPU hardware utilization across multiple batches. With this option, it is no
longer necessary to push batch sizes to very high values to optimize TPU
performance.

It is worth noting what the user does not need to worry about—in TensorFlow/Keras,
the complicated code to distribute the data is taken care of for you automatically in
strategy.distribute_dataset(). At the time of writing, this is code you have to
write by hand in PyTorch.

It’s not enough to simply write the software, though; we also need to set up the hard‐
ware. For example, to use MultiWorkerMirroredStrategy, we will also need to
launch a cluster of machines that coordinate the task of training an ML model.

To use TPUStrategy, we will need to launch a machine with a TPU attached to it. We
can accomplish this using:

gcloud compute tpus execution-groups create \
 --accelerator-type v3-32 --no-forward-ports --tf-version 2.4.1 \
 --name somevmname --zone europe-west4-a \
 --metadata proxy-mode=project_editors

Distribution strategies are easier to implement if we use a service that manages the
hardware infrastructure for us. We’ll defer the hardware setup to the next section.

Serverless ML
While Jupyter notebooks are good for experimentation and training, it’s a lot easier
for ML engineers to maintain code in production if it’s organized into Python pack‐
ages. It is possible to use a tool like Papermill to directly execute a notebook. We rec‐
ommend, however, that you treat notebooks as expendable, and keep your
production-ready code in standalone Python files with associated unit tests.

By organizing code into Python packages, we also make it easy to submit the code to
a fully managed ML service such as Google’s Vertex AI, Azure ML, or Amazon Sage‐
Maker. Here, we’ll demonstrate Vertex AI, but the others are similar in concept.

Creating a Python Package
To create a Python package, we have to organize files in a folder structure where each
level is marked by an __init__.py file. The __init__.py file, which runs any initializa‐
tion code the package needs, is required, but it can be empty. The simplest structure
that would be sufficient is to have:

trainer/
 __init__.py
 07b_distribute.py

266 | Chapter 7: Training Pipeline

https://oreil.ly/AL4I9

Reusable modules
How do we get code in a notebook into the file 07b_distribute.py? An easy way to
reuse code between Jupyter notebooks and the Python package is to export the
Jupyter notebook to a .py file and then remove code whose only purpose is to display
graphs and other output in the notebook. Another possibility is to base all the code
development in the standalone files and simply import the necessary modules from
the notebook cells as needed.

The reason that we create a Python package is that packages make it much easier to
make our code reusable. However, it is unlikely that this model is the only one that we
will train. For maintainability reasons, we suggest that you have an organizational
structure like this (the full code is in serverlessml on GitHub):

flowers/ Top-level package
 __init__.py Initialize the flowers package
 classifier/ Subpackage for the classification model
 __init__.py
 model.py Most of the code in the Jupyter notebook
 train.py argparse and then launches model training
 ...
 ingest/ Subpackage for reading data
 __init__.py
 tfrecords.py Code to read from TensorFlow Records
 ...
 utils/ Subpackage for code reusable across models
 __init__.py
 augment.py Custom layers for data augmentation
 plots.py Various plotting functions
 ...

Use Jupyter notebooks for experimentation, but at some point, move the code into a
Python package and maintain that package going forward. From then on, if you need
to experiment, call the Python package from the Jupyter notebook.

Invoking Python modules
Given files in the structure outlined in the previous section, we can invoke the train‐
ing program using:

python3 -m flowers.classifier.train --job-dir /tmp/flowers

This is also a good time at which to make all the hyperparameters to the module set‐
table as command-line parameters. For example, we will want to experiment with dif‐
ferent batch sizes, so we make the batch size a command-line parameter:

python3 -m flowers.classifier.train --job-dir /tmp/flowers \
 --batch_size 32 --num_hidden 16 --lrate 0.0001 ...

Within the entrypoint Python file, we’ll use Python’s argparse library to pass the
command-line parameters to the create_model() function.

Serverless ML | 267

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/tree/master/07_training/serverlessml

It’s best to try to make every aspect of your model configurable. Besides the L1 and L2
regularizations, it’s a good idea to make data augmentation layers optional as well.

Because the code has been split across multiple files, you will find yourself needing to
call functions that are now in a different file. So, you will have to add import state‐
ments of this form to the caller:

from flowers.utils.augment import *
from flowers.utils.util import *
from flowers.ingest.tfrecords import *

Installing dependencies
While the package structure we’ve shown is sufficient to create and run a module, it is
quite likely that you will need the training service to pip install Python packages
that you need. The way to specify that is to create a setup.py file in the same directory
as the package, so that the overall structure becomes:

serverlessml/ Top-level directory
 setup.py File to specify dependencies
 flowers/ Top-level package
 __init__.py

The setup.py file looks like this:

from setuptools import setup, find_packages
setup(
 name='flowers',
 version='1.0',
 packages=find_packages(),
 author='Practical ML Vision Book',
 author_email='abc@nosuchdomain.com',
 install_requires=['python-package-example']
)

Verify that you got the packaging and imports correct by doing two
things from within the top-level directory (the directory that con‐
tains setup.py):

python3 ./setup.py dist
python3 -m flowers.classifier.train \
 --job-dir /tmp/flowers \
 --pattern '-00000-*'--num_epochs 1

Also look at the generated MANIFEST.txt file to ensure that all the
desired files are there. If you need ancillary files (text files, scripts,
and so on), you can specify them in setup.py.

268 | Chapter 7: Training Pipeline

Submitting a Training Job
Once we have a locally callable module, we can put the module source in Cloud Stor‐
age (e.g., gs://${BUCKET}/flowers-1.0.tar.gz) and then submit jobs to Vertex
Training to have it run the code for us on the cloud hardware of our choice.

For example, to run on a machine with a single CPU, we’d create a configuration file
(let’s call it cpu.yaml) specifying the CustomJobSpec:

workerPoolSpecs:
 machineSpec:
 machineType: n1-standard-4
 replicaCount: 1
 pythonPackageSpec:
 executorImageUri: us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-4:latest
 packageUris: gs://{BUCKET}/flowers-1.0.tar.gz
 pythonModule: flowers.classifier.train
 args:
 - --pattern="-*"
 - --num_epochs=20
 - --distribute="cpu"

We’d then provide that configuration file when starting the training program:

gcloud ai custom-jobs create \
 --region=${REGION} \
 --project=${PROJECT} \
 --python-package-uris=gs://${BUCKET}/flowers-1.0.tar.gz \
 --config=cpu.yaml \
 --display-name=${JOB_NAME}

A key consideration is that if we have developed the code using Python 3.7 and
TensorFlow 2.4, we need to ensure that Vertex Training uses the same versions of
Python and TensorFlow to run our training job. We do this using the executorIma
geUri setting. Not all combinations of runtimes and Python versions are supported,
since some versions of TensorFlow may have had issues that were subsequently fixed.
If you are developing on Vertex Notebooks, there will be a corresponding runtime on
Vertex Training and Vertex Prediction (or an upgrade path to get to a consistent
state). If you are developing in a heterogeneous environment, it’s worth verifying that
your development, training, and deployment environments support the same envi‐
ronment in order to prevent nasty surprises down the line.

Serverless ML | 269

https://oreil.ly/PyqU2

Container or Python Package?
The purpose of putting our training code into a Python package is to make it easier to
install on ephemeral infrastructure. Because we won’t have the ability to log in to such
machines and install software packages interactively, we want to make the installation
of our training software completely automated. Python packages provide us that
ability. Another way to capture dependencies, that works beyond just Python, is to
containerize your training code. A container is a lightweight bundle of software that
includes everything needed to run an application—besides our Python code, it will
also include the Python installation itself, any system tools and system libraries that
we require (such as video decoders), and all our settings (such as configuration files,
authentication keys, and environment variables).

Because Vertex Training accepts both Python modules and container images, we can
capture the Python and TensorFlow dependencies by building a container image that
contains our training code as well as the versions of Python and TensorFlow that we
need. In the container, we’d also install any extra packages our code requires. To make
container creation easier, TensorFlow provides a base container image. If you are
developing using Vertex Notebooks, every Notebook instance has a corresponding
container image that you can use as your base (we will do this in the next section).
Therefore, creating a container to run your training code is quite straightforward.

Given that both Python packages and containers are relatively easy to create, which
one should you use?

Using Python packages for training can help you organize your code better and fos‐
ters reuse and maintainability. Furthermore, if you provide a Python package to Ver‐
tex Training, it will install the package on a machine- and framework-optimized
container, something that you would be hard pressed to do if you were building your
own containers.

On the other hand, using a container for training is much more flexible. For example,
a container is a good option in a project where you need to use old or unsupported
versions of a runtime or need to install proprietary software components such as
database connectors to internal systems.

So, the choice comes down to what you value more: efficiency (in which case you’d
choose a Python package) or flexibility (in which case you’d choose a container).

In the training code, a OneDeviceStrategy should be created:

strategy = tf.distribute.OneDeviceStrategy('/cpu:0')

Using the gcloud command to launch a training job makes it easy to incorporate
model training in scripts, invoke the training job from Cloud Functions, or schedule
the training job using Cloud Scheduler.

270 | Chapter 7: Training Pipeline

https://oreil.ly/7qmS1
https://oreil.ly/fj748
https://oreil.ly/fj748

Next, let’s walk through the hardware setups corresponding to the different distribu‐
tion scenarios that we have covered so far. Each scenario here corresponds to a differ‐
ent distribution strategy.

Running on multiple GPUs
To run on a single machine with one, two, four, or more GPUs, we can add a snippet
like this to the YAML configuration file:

workerPoolSpecs:
 machineSpec:
 machineType: n1-standard-4
 acceleratorType: NVIDIA_TESLA_T4
 acceleratorCount: 2
 replicaCount: 1

and launch the gcloud command as before, making sure to specify this configuration
file in --config.

In the training code, a MirroredStrategy instance should be created.

Distribution to multiple GPUs
To run on multiple workers, each of which has several GPUs, the configuration
YAML file should include lines similar to the following:

workerPoolSpecs:
 - machineSpec:
 machineType: n1-standard-4
 acceleratorType: NVIDIA_TESLA_T4
 acceleratorCount: 1
 - machineSpec:
 machineType: n1-standard-4
 acceleratorType: NVIDIA_TESLA_T4
 acceleratorCount: 1
 replicaCount: 1

Remember that if you are using multiple worker machines, you should use virtual
epochs by declaring the number of training examples that you will term as an epoch.
Shuffling is also required. The code example in serverlessml on GitHub does both
these things.

In the training code, a MultiWorkerMirroredStrategy instance should be created.

Distribution to TPU
To run on a Cloud TPU, the configuration file YAML looks like this (choose the ver‐
sion of TPU that is most appropriate at the time you are reading this):

workerPoolSpecs:
 - machineSpec:

Serverless ML | 271

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/tree/master/07_training/serverlessml
https://oreil.ly/vHMhx
https://oreil.ly/vHMhx
https://oreil.ly/mVeTS

 machineType: n1-standard-4
 acceleratorType:TPU_V2
 acceleratorCount: 8

In the training code, a TPUStrategy instance should be created.

You can use Python’s error handling mechanism to create a boilerplate method for
creating the distribution strategy appropriate for the hardware configuration:

def create_strategy():
 try:
 # detect TPUs
 tpu = tf.distribute.cluster_resolver.TPUClusterResolver().connect()
 return tf.distribute.experimental.TPUStrategy(tpu)
 except ValueError:
 # detect GPUs
 return tf.distribute.MirroredStrategy()

Now that we have looked at how to train a single model, let’s consider how to train a
family of models and pick the best one.

Hyperparameter Tuning
In the process of creating our ML model, we have made many arbitrary choices: the
number of hidden nodes, the batch size, the learning rate, the L1/L2 regularization
amounts, and so on. The overall number of possible combinations is massive, so it’s
preferable to take an optimization approach where we specify a budget (e.g., “try 30
combinations”) and instead ask a hyperparameter optimization technique to choose
the best settings.

In Chapter 2, we looked at the in-built Keras Tuner. However, that only works if your
model and dataset are small enough that the entire training process can be carried out
wrapped within the tuner. For more realistic ML datasets, it’s better to use a fully
managed service.

Fully managed hyperparameter training services provide a combination of parameter
values to the training program, which then trains the model and reports on perfor‐
mance metrics (accuracy, loss, etc.). So, the hyperparameter tuning service requires
that we:

• Specify the set of parameters to tune, the search space (the range of values each
parameter can take, for example that the learning rate has to be between 0.0001
and 0.1), and the search budget.

• Incorporate a given combination of parameters into the training program.
• Report how well the model performed when using that combination of parame‐

ters.

272 | Chapter 7: Training Pipeline

In this section, we’ll discuss hyperparameter tuning on Vertex AI as an example of
how this works.

Specifying the search space
We specify the search space in the YAML configuration provided to Vertex AI. For
example, we might have:

displayName: "FlowersHpTuningJob"
maxTrialCount: 50
parallelTrialCount: 2
studySpec:
 metrics:
 - metricId: accuracy
 goal: MAXIMIZE
 parameters:
 - parameterId: l2
 scaleType: UNIT_LINEAR_SCALE
 doubleValueSpec:
 minValue: 0
 maxValue: 0.2
 - parameterId: batch_size
 scaleType: SCALE_TYPE_UNSPECIFIED
 discreteValueSpec:
 values:
 - 16
 - 32
 - 64
 algorithm: ALGORITHM_UNSPECIFIED

In this YAML listing, we are specifying (see if you can find the corresponding lines):

• The goal, which is to maximize the accuracy that is reported by the trainer
• The budget, which is a total of 50 trials carried out 2 at a time
• That we want to stop a trial early if it looks unlikely to do better than we have

already seen
• Two parameters, l2 and batch_size:

— The possible L2 regularization strengths (between 0 and 0.2)
— The batch size, which can be one of 16, 32, or 64

• The algorithm type, which if unspecified uses Bayesian Optimization

Using parameter values

Vertex AI will invoke our trainer, passing specific values for l2 and batch_size as
command-line parameters. So, we make sure to list them in the argparse:

parser.add_argument(
 '--l2',

Serverless ML | 273

 help='L2 regularization', default=0., type=float)
parser.add_argument(
 '--batch_size',
 help='Number of records in a batch', default=32, type=int)

We have to incorporate these values into the training program. For example, we’ll use
the batch size as:

train_dataset = create_preproc_dataset(
 'gs://...' + opts['pattern'],
 IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS
).batch(opts['batch_size'])

It’s helpful at this point to step back and think carefully about all the implicit choices
that we have made in the model. For example, our CenterCrop augmentation layer
was:

tf.keras.layers.experimental.preprocessing.RandomCrop(
 height=IMG_HEIGHT // 2, width=IMG_WIDTH // 2,
 input_shape=(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS),
 name='random/center_crop'
)

The number 2 is baked in, yet the truly fixed thing is the size of the image
(224x224x3) that the MobileNet model requires. It’s worth experimenting with
whether we should center crop the images to 50% the original size, or use some other
ratio. So, we make crop_ratio one of the hyperparameters:

- parameterName: crop_ratio
 type: DOUBLE
 minValue: 0.5
 maxValue: 0.8
 scaleType: UNIT_LINEAR_SCALE

and use it as follows:

IMG_HEIGHT = IMG_WIDTH = round(MODEL_IMG_SIZE / opts['crop_ratio'])
tf.keras.layers.experimental.preprocessing.RandomCrop(
 height=MODEL_IMG_SIZE, width=MODEL_IMG_SIZE,
 input_shape=(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS),
 name='random/center_crop'
)

Reporting accuracy
After we train the model using the hyperparameters that were supplied to the trainer
on the command line, we need to report back to the hyperparameter tuning service.
What we report back is whatever we specified as the hyperparameterMetricTag in
the YAML file:

hpt = hypertune.HyperTune()
accuracy = ...
hpt.report_hyperparameter_tuning_metric(

274 | Chapter 7: Training Pipeline

 hyperparameter_metric_tag='accuracy',
 metric_value=accuracy,
 global_step=nepochs)

Result
On submitting the job, hyperparameter tuning is launched and 50 trials are carried
out, 2 at a time. The hyperparameters for these trials are chosen using a Bayesian
optimization approach, and because we specified two parallel trials, the optimizer
starts with two random initial starting points. Whenever a trial finishes, the optimizer
determines which part of the input space needs further exploration and a new trial is
launched.

The cost of the job is determined by the infrastructure resources used to train the
model 50 times. Running the 50 trials 2 at a time causes the job to finish twice as fast
as if we’d run them only one at a time. If we were to run the 50 trials 10 at a time, the
job would finish 10 times faster but cost the same—however, the first 10 trials
wouldn’t get much of a chance to incorporate information from the previously fin‐
ished trials, and future trials, on average, are unable to take advantage of the informa‐
tion from 9 already-started trials. We recommend using as many total trials as your
budget allows and as few prallel trials as your patience allows! You can also resume an
already completed hyperparameter job (specify resumePreviousJobId in the YAML)
so you can continue the search if you find more budget or more patience.

The results are shown in the web console (see Figure 7-6).

Figure 7-6. The results of hyperparameter tuning.

Based on the tuning, the highest accuracy (0.89) is obtained with the following set‐
tings: l2=0, batch_size=64, num_hidden=24, with_color_distort=0,
crop_ratio=0.70706.

Serverless ML | 275

Continuing tuning

Looking at these results, it is striking that the optimal values for num_hidden and
batch_size are the highest values we tried. Given this, it might be a good idea to con‐
tinue the hyperparameter tuning process and explore even higher values. At the same
time, we can reduce the search space for the crop_ratio by making it a set of discrete
values (0.70706 should probably be just 0.7).

This time, we don’t need Bayesian optimization. We just want the hyperparameter
service to carry out a grid search of 45 possible combinations (this is also the budget):

 - parameterId: batch_size
 scaleType: SCALE_TYPE_UNSPECIFIED
 discreteValueSpec:
 values:
 - 48
 - 64
 - 96
 - parameterId: num_hidden
 scaleType: SCALE_TYPE_UNSPECIFIED
 discreteValueSpec:
 values:
 - 16
 - 24
 - 32
 - parameterId: crop_ratio
 scaleType: SCALE_TYPE_UNSPECIFIED
 discreteValueSpec:
 values:
 - 0.65
 - 0.70
 - 0.75
 - 0.80
 - 0.85

After this new training run, we get a report as before, and we can select the best set of
parameters. When we did this, it turned out that batch_size=64, num_hidden=24 was
indeed the best—better than choosing 96 for the batch size or 32 for the number of
hidden nodes—but with crop_ratio=0.8.

Deploying the Model
Now that we have a trained model, let’s deploy it for online predictions. The Tensor‐
Flow SavedModel format is supported by a serving system called TensorFlow Serving.
A Docker container for TensorFlow Serving is available for you to deploy this in a
container orchestration system like Google Kubernetes Engine, Google Cloud Run,
Amazon Elastic Kubernetes Service, AWS Lambda, Azure Kubernetes Service, or on
premises using Kubernetes. Managed versions of TensorFlow Serving are available in

276 | Chapter 7: Training Pipeline

https://oreil.ly/nS7ZA

all the major clouds. Here, we’ll show you how to deploy the SavedModel into Goo‐
gle’s Vertex AI.

Vertex AI also provides model management and versioning capabilities. In order to
use these functionalities, we’ll create an endpoint called flowers to which we will
deploy multiple model versions:

gcloud ai endpoints create --region=us-central1 --display-name=flowers

Suppose, for example, that hyperparameter tuning trial #33 was the best and contains
the model we want to deploy. This command will create a model called txf (for trans‐
fer learning) and deploy it into the flowers endpoint:

MODEL_LOCATION="gs://...}/33/flowers_model"
gcloud ai models upload ---display-name=txf \
 --container-image-uri=".../tf2-cpu.2-1:latest" -artifact-uri=$MODEL_LOCATION
gcloud ai endpoints deploy-model $ENDPOINT_ID --model=$MODEL_ID \
 ... --region=us-central1 --traffic-split=

Once the model is deployed, we can do an HTTP POST of a JSON request to the
model to obtain predictions. For example, posting:

{"instances": [
 {"filenames": "gs://cloud-ml-data/.../9853885425_4a82356f1d_m.jpg"},
 {"filenames": "gs://cloud-ml-data/../8713397358_0505cc0176_n.jpg"}
]}

returns:

{
 "predictions": [
 {
 "probability": 0.9999885559082031,
 "flower_type_int": 1,
 "flower_type_str": "dandelion"
 },
 {
 "probability": 0.9505964517593384,
 "flower_type_int": 4,
 "flower_type_str": "tulips"
 }
]
}

Of course, we could post this request from any program capable of sending an HTTP
POST request (see Figure 7-7).

Serverless ML | 277

Figure 7-7. Left: trying out the deployed model from the Google Cloud Platform console.
Right: example code for replicating in Python.

How would someone use this model? They would have to upload an image file to the
cloud, and send the path to the file to the model for predictions. This process is a bit
onerous. Can the model not directly accept the contents of an image file? We’ll look at
how to improve the serving experience in Chapter 9.

Summary
In this chapter, we covered various aspects of building a training pipeline. We started
by considering efficient storage in TFRecords files, and how to read that data effi‐
ciently using a tf.data pipeline. This included parallel execution of map functions,
interleaved reading of datasets, and vectorization. The optimization ideas carried over
into the model itself, where we looked at how to parallelize model execution across
multiple GPUs, multiple workers, and on TPUs.

We then moved on to operationalization considerations. Rather than managing infra‐
structure, we looked at how to carry out training in a serverless way by submitting a
training job to Vertex AI, and how to use this paradigm to carry out distributed train‐
ing. We also looked at how to use Vertex AI’s hyperparameter tuning service to

278 | Chapter 7: Training Pipeline

achieve better model performance. For predictions, we need autoscaling infrastruc‐
ture, so we looked at how to deploy a SavedModel into Vertex AI. Along the way, you
learned about signatures, how to customize them, and how to get predictions out of a
deployed model.

In the next chapter, we will look at how to monitor the deployed model.

Summary | 279

CHAPTER 8

Model Quality and Continuous Evaluation

So far in this book, we have covered the design and implementation of vision models.
In this chapter, we will dive into the important topic of monitoring and evaluation. In
addition to beginning with a high-quality model, we also want to maintain that qual‐
ity. In order to ensure optimal operation, it is important to obtain insights through
monitoring, calculate metrics, understand the quality of the model, and continuously
evaluate its performance.

Monitoring
So, we’ve trained our model on perhaps millions of images, and we are very happy
with its quality. We’ve deployed it to the cloud, and now we can sit back and relax
while it makes great predictions forever into the future… Right? Wrong! Just as we
wouldn’t leave a small child alone to manage him or herself, we also don’t want to
leave our models alone out in the wild. It’s important that we constantly monitor their
quality (using metrics like accuracy) and computational performance (queries per
second, latency, etc.). This is especially true when we’re constantly retraining models
on new data that may contain distribution changes, errors, and other issues that we’ll
want to be aware of.

TensorBoard
Often ML practitioners train their models without fully considering all the details.
They submit a training job and check it every now and then until the job is finished.
Then they make predictions using the trained model to see how it’s performing. This
may not seem like a big deal if the training jobs take a few minutes. However, many
computer vision projects, especially with datasets that contain millions of images,
have training jobs that take days or weeks. It would be terrible if something went

281

wrong with the training early on and we didn’t notice until training was complete, or
until we tried to use the model to make some predictions.

There is a great monitoring tool called TensorBoard that is distributed with Tensor‐
Flow that we can use to avoid just this scenario. TensorBoard is an interactive dash‐
board (see Figure 8-1) that displays summaries saved during model training and
evaluation. You can use it as a historical record of experiments run, for comparing
different versions of your model or code, and for analyzing training jobs.

Figure 8-1. The TensorBoard scalar summary UI.

TensorBoard allows us to monitor loss curves to make sure that the model training is
still progressing, and it hasn’t stopped improving. We can also display and interact
with any other evaluation metrics we have in our model, such as accuracy, precision,
or AUC—for example, we can perform filtering across multiple series, smoothing,
and outlier removal, and we’re able to zoom in and out.

282 | Chapter 8: Model Quality and Continuous Evaluation

Weight Histograms
We can also explore histograms in TensorBoard, as shown in Figure 8-2. We can use
these to monitor weights, gradients, and other scalar quantities that have too many
values to inspect individually.

Figure 8-2. The TensorBoard histogram UI. Model weights are on the horizontal axis
and the training step number is on the vertical axis.

What Should the Weight Distributions Look Like?
Each layer of a neural network can have thousands or millions of weights. As with any
large collection of values, they form a distribution. The distribution of weights at the
beginning of training and at the end can be very different. Usually the initial distribu‐
tion is based on our weight initialization strategy, whether that be samples from a ran‐
dom normal distribution or a random uniform distribution, with or without
normalization factors, and so on.

As the model gets trained and converges, however, the central limit theorem (CLT)
tells us that the weight distribution should ideally start to look more Gaussian. It
states that if we have a population with mean μ and standard deviation σ, then given a
large enough number of random samples, the distribution of the sample means
should be approximately Gaussian. But if we have a systematic problem in our model,
then the weights will reflect that problem and may be skewed toward zero values (an
indication of the presence of “dead layers,” which happen if input values are poorly
scaled) or very large ones (which happens as a result of overfitting). Thus, by looking
at the weight distribution, we can diagnose whether there is a problem.

If our weight distribution is not looking Gaussian, there are a few things we can do.
We can scale our input values from [0, 1] to [–1, 1] if the distribution is skewed
toward zero values. If the problem is in intermediate layers, try adding batch

Monitoring | 283

normalization. If the distribution tends toward large values, we can try adding regula‐
rization or increasing the dataset size. Other issues can be resolved through trial and
error. Perhaps we chose our initialization strategy poorly, and it made it hard for the
weights to move to the standard regime of small, normally distributed weights. In that
case, we can try changing the initialization method.

We may also be having gradient issues that could be moving the weights away from a
Gaussian distribution. We can fix this by adding gradient clipping, constraints, or
penalties (for example, adding a loss term that grows the farther gradients stray from
a set value). Additionally, the order and distribution of examples in our mini-batches
can affect the evolution of our weight distribution, so experimenting with those
parameters might help make the weight distribution more Gaussian.

Device Placement
We can output the TensorFlow model graph to TensorBoard for visualization and
exploration, as shown in Figure 8-3. .

Figure 8-3. TensorBoard model graph visualizations: structure view (left) and device
view (right).

284 | Chapter 8: Model Quality and Continuous Evaluation

The default structure view shows which nodes share the same structure, and the
device view shows which nodes are on which device(s), with a color per device. We
can also see TPU compatibility and more. This can allow us to ensure that our model
code is being accelerated properly.

Data Visualization
TensorBoard can display examples of specific types of data, such as images (on the
Images tab, shown on the left in Figure 8-4) or audio (on the Audio tab). This way, we
can get feedback as training is progressing; for example, with image generation, we
can see live how our generated images are looking. For classification problems, Ten‐
sorBoard also has the ability to display confusion matrices, as seen on the right in
Figure 8-4, so we can monitor metrics per class throughout a training job (more on
this in “Metrics for Classification” on page 287).

Figure 8-4. The TensorBoard Images tab allows you to visualize training images (left)
and view a confusion matrix (right) to see where the classifier is making most of its
mistakes.

Training Events
We can add a TensorBoard callback to our model using code like the following:

tensorboard_callback = tf.keras.callbacks.TensorBoard(
 log_dir='logs', histogram_freq=0, write_graph=True,
 write_images=False, update_freq='epoch', profile_batch=2,
 embeddings_freq=0, embeddings_metadata=None, **kwargs
)

We specify the directory path where the TensorBoard event logs will get written to
disk using the log_dir argument. histogram_freq and embeddings_freq control
how often (in epochs) those two types of summaries are written; if you specify a value
of zero they are not computed or displayed. Note that validation data, or at least a

Monitoring | 285

split, needs to be specified when fitting the model for histograms to show. Further‐
more, for embeddings, we can pass a dictionary to the argument embeddings_meta
data that maps layer names to a filename where the embedding metadata will be
saved.

If we want to see the graph in TensorBoard, we can set the write_graph argument to
True; however, the event log files can get quite sizable if our model is large. The
update frequency is specified through the update_freq argument. Here it is set to
update every epoch or batch, but we can set it to an integer value to have it update
after that number of batches. We can visualize model weights as images in Tensor‐
Board using the Boolean argument write_images. Lastly, if we want to profile the
performance of our compute characteristics, such as the contributions to the step
time, we can set profile_batch to an integer or tuple of integers and it will profile
that batch or range of batches. Setting the value to zero disables profiling.

Once defined, we can add the TensorBoard callback to model.fit()’s callbacks list as
shown here:

history = model.fit(
 train_dataset,
 epochs=10,
 batch_size=1,
 validation_data=validation_dataset,
 callbacks=[tensorboard_callback]
)

The simplest way to run TensorBoard is to open a terminal and run the following
bash command:

tensorboard --logdir=<path_to_your_logs>

You can provide other arguments, for example to change the default port Tensor‐
Board uses, but to quickly get it up and running you simply need to specify the log
dir.

The summaries typically include loss and evaluation metric curves. However, we can
use callbacks to emit other potentially useful summaries, like images and weight his‐
tograms, depending on our use case. We can also print out and/or log the loss and
eval metrics while training is taking place, as well as have periodic evaluations of gen‐
erated images or other model outputs that we can then inspect for diminishing
returns in improvement. Lastly, if training locally with model.fit(), we can inspect
the history output and look at the loss and eval metrics and how they change over
time.

286 | Chapter 8: Model Quality and Continuous Evaluation

Model Quality Metrics
Even if you are using a validation set, looking at the validation loss doesn’t really give
a clear picture of how well the model is performing. Enter the evaluation metrics!
These are metrics that are calculated based on the model’s predictions on unseen data
that allow us to evaluate how the model is doing in terms that are related to the use
case.

Metrics for Classification
As you learned in previous chapters, image classification involves assigning labels to
images that indicate which class they belong to. Labels can be mutually exclusive,
with only a single label applying to any given image, or it may be possible for multiple
labels to describe an image. In both the single-label and multilabel cases, we typically
predict a probability across each of the classes for an image. Since our predictions are
probabilities and our labels are usually binary (0 if the image is not that class and 1 if
it is), we need some way to convert predictions into a binary representation so we can
compare them with the actual labels. To do that, we typically set a threshold: any pre‐
dicted probabilities below the threshold become a 0, and any predicted probabilities
above it become a 1. In binary classification the default threshold is normally 0.5, giv‐
ing an equal chance for both choices.

Binary classification
There are many metrics for single-label classification that are used in practice, but the
best choice depends on our use case. In particular, different evaluation metrics are
appropriate for binary and multiclass classification. Let’s begin with binary classifica‐
tion.

The most common evaluation metric is accuracy. This is a measure of how many pre‐
dictions our model got right. To figure that out, it’s also useful to calculate four other
metrics: true positives, true negatives, false positives, and false negatives. True posi‐
tives are when the label is 1, indicating that the example belongs to a certain class, and
the prediction is also 1. Similarly, true negatives are when the label is 0, indicating
that the example does not belong to that class, and the prediction is also 0. Con‐
versely, a false positive is when the label is 0 but the prediction is 1, and a false nega‐
tive is when the label is 1 but the prediction is 0. Taken together, these create
something called a confusion matrix for the set of predictions, which is a 2x2 grid that
counts the number of each of these four metrics, as can be seen in Figure 8-5.

Model Quality Metrics | 287

Figure 8-5. A binary classification confusion matrix.

We can add these four metrics to our Keras model as follows:

model.compile(
 optimizer="sgd",
 loss="mse",
 metrics=[
 tf.keras.metrics.TruePositives(),
 tf.keras.metrics.TrueNegatives(),
 tf.keras.metrics.FalsePositives(),
 tf.keras.metrics.FalseNegatives(),
]
)

Classification accuracy is the percentage of correct predictions, so it’s calculated by
dividing the number of predictions the model got right by the total number of predic‐
tions it made. Using the four confusion matrix metrics, this can be expressed as:

accuracy = TP + TN
TP + TN + FP + FN

In TensorFlow, we can add an accuracy metric to our Keras model like this:

model.compile(optimizer="sgd", loss="mse",
 metrics=[tf.keras.metrics.Accuracy()]
)

This counts the number of predictions that matched the labels and then divides by
the total number of predictions.

If our predictions and labels are all either 0 or 1, as in the case of binary classification,
then we could instead add the following TensorFlow code:

model.compile(optimizer="sgd", loss="mse",
 metrics=[tf.keras.metrics.BinaryAccuracy()]
)

In this case the predictions are most likely probabilities that are thresholded to 0 or 1
and then compared with the actual labels to see what percentage of them match.

If our labels are categorical, one-hot encoded, then we could instead add the follow‐
ing TensorFlow code:

288 | Chapter 8: Model Quality and Continuous Evaluation

model.compile(optimizer="sgd", loss="mse",
 metrics=[tf.keras.metrics.CategoricalAccuracy()]
)

This is more common for the multiclass case and usually involves comparing a vector
of predicted probabilities for each class to a one-hot-encoded vector of labels for each
example.

A problem with accuracy, however, is that it works well only when the classes are bal‐
anced. For example, suppose our use case is to predict whether a retinal image depicts
eye disease. Let’s say we have screened one thousand patients, and only two of them
actually have eye disease. A biased model that predicts that every image shows a
healthy eye would be correct 998 times and wrong only twice, thus achieving 99.8%
accuracy. While that might sound impressive, this model is actually useless to us
because it will completely fail to detect the cases we’re actually looking for. For this
specific problem, accuracy is not a useful evaluation metric. Thankfully, there are
other combinations of the confusion matrix values that can be more meaningful for
imbalanced datasets (and also for balanced ones).

If, instead, we were interested in the percentage of positive predictions that our model
got right, then we would be measuring the prediction precision. In other words, how
many patients really have eye disease out of all the ones the model predicted to have
eye disease? Precision is calculated as follows:

precision = TP
TP + FP

Similarly, if we wanted to know the percentage of positive examples that our model
was able to correctly identify, then we would be measuring the prediction recall. In
other words, of the patients who really had the eye disease, how many did the model
find? Recall is calculated as:

recall = TP
TP + FN

In TensorFlow, we can add these two metrics to our Keras model using:

model.compile(optimizer="sgd", loss="mse",
 metrics=[tf.keras.metrics.Precision(), tf.keras.metrics.Recall()]
)

We could also add a thresholds argument either as a float in the range [0, 1] or a list
or tuple of float values if we want the metrics calculated at thresholds other than 0.5.

As you can see, with precision and recall the numerators are identical and the
denominators only differ in whether they include false positives or false negatives.

Model Quality Metrics | 289

Therefore, typically when one goes up, the other goes down. So how do we find a
good balance point between the two? We can add another metric, the F1 score:

F1 = 2 * precision * recall
precision + recall

The F1 score is simply the harmonic mean between precision and recall. Like accu‐
racy, precision, and recall, it has a range between 0 and 1. An F1 score of 1 indicates a
model with perfect precision and recall and thus perfect accuracy. An F1 score of 0
means either the precision or the recall is 0, which means that there are no true posi‐
tives. This indicates either that we have a terrible model or that our evaluation dataset
contains no positive examples at all, denying our model the chance to learn how to
predict positive examples well.

A more general metric known as the Fβ score adds a real-valued constant between 0
and 1, β, which allows us to scale the importance of precision or recall in the F-score
equation:

Fβ = 1 + β2 * precision * recall
β2 * precision + recall

This is useful if we want to use a more aggregate measure than precision or recall
alone, but the costs associated with false positives and false negatives are different; it
allows us to optimize for the one we care about the most.

All the evaluation metrics we’ve looked at so far require us to choose a classification
threshold which determines whether the probabilities are high enough to become
positive class predictions or not. But how do we know where to set the threshold? Of
course, we could try many possible threshold values and then choose the one that
optimizes the metric we care most about.

However, if we’re using multiple thresholds, there is another way to compare models
across all thresholds at once. This first involves building curves out of metrics across
a grid of thresholds. The two most popular curves are the receiver operating character‐
istic (ROC) and precision-recall curves. ROC curves have the true positive rate, also
known as the sensitivity or recall, on the y-axis; and the false positive rate, also known
as 1-specificity (the true negative rate) or fallout, along the x-axis. The false positive
rate is defined as:

FPR = FP
FP + TN

Precision-recall curves have precision on the y-axis and recall on the x-axis.

290 | Chapter 8: Model Quality and Continuous Evaluation

Suppose we’ve chosen a grid of two hundred equally spaced thresholds, and calcula‐
ted the thresholded evaluation metrics for both the horizontal and vertical axes for
either type of curve. Of course, plotting these points will create a line that extends
across all two hundred thresholds.

Generating curves like these can help us with threshold selection. We want to choose
a threshold that optimizes the metric of interest. It could be one of these statistical
metrics, or, better yet, a metric relevant to the business or use case at hand, such as
the economic cost of missing a patient who has eye disease versus carrying out addi‐
tional unnecessary screening of a patient who doesn’t have eye disease.

We can summarize this information into a single number by calculating the area
under the curve (AUC). As we can see on the left side of Figure 8-6, a perfect classifier
would have an AUC of 1 because there would be a 100% true positive rate and a 0%
false positive rate. A random classifier would have an AUC of 0.5 because the ROC
curve would fall along the y = x-axis, which shows that the numbers of true positives
and false positives grow at equal rates. If we calculate an AUC less than 0.5, then that
means our model is performing worse than a random classifier; an AUC of 0 means
the model was perfectly wrong about every prediction. All else being equal, a higher
AUC is usually better, with the possible range being between 0 and 1.

The precision-recall (PR) curve is similar, as we can see on the right of Figure 8-6;
however, not every point in PR space may be obtained, and thus the range is less than
[0, 1]. The actual range depends on how skewed the data’s class distributions are.

Figure 8-6. Left: ROC curve. Right: precision-recall curve.

So, which curve should we use when comparing classification models? If the classes
are well sampled and balanced, then calculating the AUC-ROC is recommended.

Model Quality Metrics | 291

Otherwise, if the classes are imbalanced or skewed, then AUC-PR is the recom‐
mended choice. Here is the TensorFlow code to add the AUC evaluation metric:

tf.keras.metrics.AUC(
 num_thresholds=200, curve="ROC",
 summation_method="interpolation",
 thresholds=None, multi_label=False
)

We can set the number of thresholds to calculate the four confusion metrics via the
num_thresholds argument, which will create that number of equally spaced thresh‐
olds between 0 and 1. Alternatively, we can provide a list of float thresholds within
the range [0, 1] that tf.keras.metrics.AUC() will use instead to calculate the AUC.

We can also set the type of curve via the curve argument to either "ROC" or "PR" to
use an ROC or precision-recall curve, respectively.

Lastly, since we are performing binary classification, we set multi_label to False.
Otherwise, it would calculate the AUC for each class and then average.

Multiclass, single-label classification
If we instead have a multiclass classification problem, let’s say with three classes (dog,
cat, and bird), then the confusion matrix will look like Figure 8-7. Notice that instead
of a 2x2 matrix we now have a 3x3 matrix; thus, in general, it will be an nxn matrix
where n is the number of classes. A key difference between the binary classification
problem and the multiclass classification problem is that we don’t have true negatives
anymore, because those are now the “true positives” of the other classes.

Figure 8-7. A multiclass confusion matrix with three classes.

Remember, for multiclass, single-label classification, even though we have multiple
classes, each instance still belongs to one and only one class. The labels are mutually
exclusive. It is either a picture of a dog, a cat, or a bird, not more than one of these
things.

How can we fit our binary classification confusion matrix metrics into our multiclass
version? Let’s walk through an example. If we have an image that is labeled a dog and
we predict correctly that it is a dog, then the count in the dog-dog cell of the matrix

292 | Chapter 8: Model Quality and Continuous Evaluation

gets incremented by one. This is what we called a true positive in the binary classifi‐
cation version. But what if instead our model predicted “cat”? It’s obviously a false
something, but it doesn’t really fit into the false positive or false negative camps. It’s
just…false, wrong.

Thankfully, we don’t have to leap too far to get our multiclass confusion matrix to
work for us. Let’s look at the confusion matrix again, with values filled in this time
(Figure 8-8).

Figure 8-8. A dog, cat, bird multiclass classification confusion matrix example.

We can see that this is a balanced dataset, because each class has two hundred exam‐
ples. However, it is not a perfect model since it is not a purely diagonal matrix; it has
gotten many examples wrong, as evidenced by the off-diagonal counts. If we want to
be able to calculate the precision, recall, and other metrics, then we must look at each
class individually.

Looking only at the dog class, our confusion matrix contracts to what we see in
Figure 8-9. We can see in this figure that our true positives are where the image was
actually a dog and we predicted a dog, which was the case for 150 examples. The false
positives are where we predicted the image was a dog but it was not (i.e., it was a cat
or a bird). Therefore, to get this count we add together the 50 examples from the dog-
cat cell and the 50 examples from the dog-bird cell. To find the count of false nega‐
tives, we do the opposite: these are cases where we should have predicted a dog but
didn’t, so to get their total we add together the 30 examples from the cat-dog cell and
the 20 examples from the bird-dog cell. Lastly, the true negative count is the sum of
the rest of the cells, where we correctly said that those images were not pictures of
dogs. Remember, even though the model might have gotten cats and birds mixed up
with each other in some cases, because for now we are only looking at the dog class
those values all get lumped together in the true negative count.

Model Quality Metrics | 293

Figure 8-9. The dog classification confusion matrix.

Once we’ve done this for every class, we can calculate the composite metrics (preci‐
sion, recall, F1 score, etc.) for each class. We can then take the unweighted average of
each of these to get the macro versions of these metrics—for example, averaging the
precisions across all classes would give the macro-precision. There is also a micro
version, where instead we add up all of the true positives from each of the individual
class confusion matrices into a global true positive count and do the same for the
other three confusion metrics. However, since this was done globally, the micro-
precision, micro-recall, and micro-F1 score will all be the same. Lastly, instead of
using an unweighted average as we did in the macro versions, we could weight each
class’s individual metric by the total number of samples of that class. This would then
give us the weighted precision, weighted recall, and so on. This can be useful if we
have imbalanced classes.

Since these all still used thresholds to convert the predicted class probabilities into a 1
or 0 for the winning class, we can use these combined metrics for various thresholds
to make ROC or precision-recall curves to find the AUC for comparing threshold-
agnostic model performance.

Multiclass, multilabel classification
In binary (single-class, single-label) classification, the probabilities are mutually
exclusive and each example either is the positive class or is not. In multiclass single-
label classification the probabilities are again mutually exclusive, so each example can
belong to one and only one class, but there are no positive and negative classes. The
third type of classification problem is multiclass multilabel classification, where the
probabilities are no longer mutually exclusive. An image doesn’t necessarily have to
be of just a dog or just a cat. If both are in the image, then the labels for both dog and
cat can be 1, and therefore a good model should predict a value close to 1 for each of
those classes, and a value close to 0 for any other classes.

What evaluation metrics can we use for the multilabel case? We have several options,
but first let’s define some notation. We’ll define Y to be the set of actual labels, Z to be
the set of predicted labels, and the function I to be the indicator function.

A harsh and challenging metric to maximize is the exact match ratio (EMR), also
known as the subset accuracy:

294 | Chapter 8: Model Quality and Continuous Evaluation

EMR = 1
n Σ

i = 1

n
I Yi = Zi

This measures the percentage of examples where we got all of the labels exactly right.
Note that this does not give partial credit. If we were supposed to predict that one
hundred classes are in an image but we only predict 99 of them, then that example
isn’t counted as an exact match. The better the model, the higher the EMR should be.

A less strict metric we could use is the Hamming score, which is effectively the multi‐
label accuracy:

HS = 1
n Σ

i = 1

n Yi ∩ Zi
Yi ∪ Zi

Here we are measuring the ratio of predicted correct labels to the total number of
labels, predicted and actual, for each example, averaged across all examples. We want
to maximize this quantity. This is similar to the Jaccard index or intersection over
union (IOU), which we looked at in Chapter 4.

There is also a Hamming loss that can be used, which has a range of [0, 1]:

HL = 1
kn Σ

i = 1

n
Σ

l = 1

k
I l ∈ Zi ∧ l ∉ Yi + I l ∉ Zi ∧ l ∈ Yi

Different from the Hamming score, the Hamming loss measures the relevance of an
example to a class label that is incorrectly predicted and then averages that measure.
Therefore, we are able to capture two kinds of errors: in the first term of the sum we
are measuring the prediction error where we predicted an incorrect label, and for the
second term we are measuring the missing error where a relevant label was not pre‐
dicted. This is similar to an exclusive or (XOR) operation. We sum over the number
of examples n and the number of classes k and normalize the double sum by those
two numbers. If we only had one class, this would simplify to essentially 1 – accuracy
for binary classification. Since this is a loss, the smaller the value, the better.

We also have multilabel forms of precision, recall, and F1 score. For precision, we
average the ratio of predicted correct labels to the total number of actual labels.

precision = 1
n Σ

i = 1

n Yi ∩ Zi
Zi

Similarly for recall, where instead we average the ratio of predicted correct labels to
the total number of predicted labels:

Model Quality Metrics | 295

recall = 1
n Σ

i = 1

n Yi ∩ Zi
Zi

For F1 score, it is similar to before as the harmonic mean of precision and recall:

F1 = 1
n Σ

i = 1

n 2 Yi ∩ Zi
Yi + Zi

Of course we can also calculate the AUC of a ROC curve or precision-recall curve
using the macro version, where we calculate the AUCs per class and then average
them.

Metrics for Regression
For image regression problems, there are also evaluation metrics that we can use to
see how well our model is performing on data outside of training. For all of the fol‐
lowing regression metrics, our goal is to minimize them as much as possible.

The most well-known and standard metric is mean squared error (MSE):

MSE = 1
n Σ

i = 1

n
Yi − Yi

2

MSE, as its name suggests, is the mean of the squared error between the predicted
and actual continuous labels. This is a mean-unbiased estimator which has great sen‐
sitivity due to the quadratic term, but this sensitivity means a few outliers can unduly
influence it.

The root mean squared error (RMSE), which is just the square root of the mean
squared error, is also used:

RMSE = 1
n Σ

i = 1

n
Yi − Yi

2

A slightly simpler and more interpretable metric is the mean absolute error (MAE):

MAE = 1
n Σ

i = 1

n
Yi − Yi

296 | Chapter 8: Model Quality and Continuous Evaluation

The MAE is just the absolute difference between continuous predictions and labels.
Compared to the MSE/RMSE with their squared exponents, the MAE is not as prone
to being skewed by a few outliers. Also, unlike MSE, which is a mean-unbiased esti‐
mator, where the estimator’s sample mean is the same as the distributional mean,
MAE is instead a median-unbiased estimator, where the estimator overestimates as
frequently as it underestimates.

In an effort to make regression more robust, we can also try the Huber loss metric.
This is also less sensitive to outliers than having a squared error loss:

HLδ Y, Y = 1
n Σ

i = 1

n
1
2 Yi − Yi

2 f or Yi − Yi ≤ δ

δ Yi − Yi − 1
2δ2 otherwise

As you can see, we get the best of both worlds with this metric. We declare a constant
threshold, δ; if the absolute residual is less than this value we use the squared term,
and otherwise we use the linear term. This way we can benefit from the sensitivity of
the squared mean–unbiased estimator of the quadratic term for values close to zero
and the robustness of the median-unbiased estimator of the linear term for values
further from zero.

Metrics for Object Detection
Essentially, most of the usual object detection evaluation metrics are the same as the
classification metrics. However, instead of comparing predicted and actual labels for
an entire image, we are comparing the objects detected versus the objects that are
actually there using bounding boxes, as we saw in Chapter 4.

One of the most common object detection metrics is the intersection over union:

IOU =
area B ∩ B
area B ∪ B

The numerator is the area of the intersection of our predicted bounding box and the
actual bounding box. The denominator is the union of our predicted bounding box
and the actual bounding box. We can see this graphically in Figure 8-10.

Model Quality Metrics | 297

Figure 8-10. Intersection over union is the area of overlap divided by the area of union.

With perfect overlap, the two areas will be equal and thus the IOU will be 1. With no
overlap, there will be 0 in the numerator and therefore the IOU will be 0. Thus, the
bounds of IOU are [0, 1].

We can also use a form of the classification confusion metrics, such as true positives.
As with classification, calculating these requires a threshold, but instead of threshold‐
ing a predicted probability, we threshold the IOU. In other words, if a bounding box’s
IOU is over a certain value, then we declare that that object has been detected. Thres‐
hold values are typically 50, 75, or 95%.

A true positive in this case would be considered a correct detection. This occurs when
the predicted and actual bounding boxes have an IOU greater than or equal to the
threshold. A false positive, on the other hand, would be considered a wrong detec‐
tion. This occurs when the predicted and actual bounding boxes have an IOU less
than the threshold. A false negative would be considered a missed detection, where
an actual bounding box was not detected at all.

Lastly, true negatives don’t apply for object detection. A true negative is a correct
missed detection. If we remember our per-class multiclass confusion matrices, the
true negative was the sum of all of the other cells not used in the other three confu‐
sion metrics. Here, the true negatives would be all of the bounding boxes that we
could have placed on the image and not triggered one of the other three confusion
metrics. Even for small images the number of permutations of these kinds of not-
placed bounding boxes would be enormous, so it doesn’t make sense to use this con‐
fusion metric.

298 | Chapter 8: Model Quality and Continuous Evaluation

Precision in this case equals the number of true positives divided by the number of all
detections. This measures the model’s ability to identify only the relevant objects
within the image:

precision = TP
alldetections

In object detection, recall measures the model’s ability to find all of the relevant
objects within the image. Therefore, it equals the number of true positives divided by
the number of all actual bounding boxes:

recall = TP
allactualboundingboxes

Just like with classification, these composite metrics can be used to create curves
using different threshold values. Some of the most common are precision-recall
curves (like the ones we’ve seen before) and recall-IOU curves, which typically plot
IOU in the range [0.5, 1.0].

We can also calculate the average precision and average recall using the precision-
recall and recall-IOU curves. In order to smooth out any perturbations in the curve,
we typically interpolate the precision at multiple recall levels before performing the
actual average precision calculation, as shown in Figure 8-11.

Figure 8-11. An interpolated precision-recall curve.

Model Quality Metrics | 299

We do something similar for average recall. In the formula, the interpolated precision
at a chosen recall level r is the maximum of the precision p found for any recall level r’
that is greater than or equal to r:

pinterpolated = maxr′ ≥ r p r′

The traditional interpolation method is to choose 11 equally spaced recall levels;
however, more recently practitioners have been experimenting with choosing all
unique recall levels for interpolation. The average precision is thus the area under the
interpolated precision-recall curve:

AP = 1
n Σ

i = 1

n − 1
ri + 1 − ri pinterpolated ri + 1

This is the end of the story for precision if we only have one class, but often in object
detection we have many classes, all of which have different detection performances.
Therefore, it can be useful to calculate the mean average precision (mAP), which is
just the mean of each class’s average precision:

mAP = 1
k Σ

l = 1

k
APl

To calculate average recall, as mentioned previously, we use the recall-IOU curve
instead of the precision-recall curve used for average precision. It is essentially the
recall averaged over all IOUs (specifically, IOUs that are at least 50%) and thus
becomes two times the area under the recall-IOU curve:

AR = 2∫0.5
1 recall u du

As we did for the multiclass objection detection case for average precision, we can
find the mean average recall (mAR) by averaging the average recalls across all classes:

mAR = 1
k Σ

l = 1

k
ARl

For instance segmentation tasks, the metrics are exactly the same as for detection.
IOU can equally well be defined for boxes or masks.

Now that we have explored the available evaluation metrics for models, let’s look at
how we use them for understanding model bias and for continuous evaluation.

300 | Chapter 8: Model Quality and Continuous Evaluation

Quality Evaluation
The evaluation metrics computed on the validation dataset during training are com‐
puted in aggregate. Such aggregate metrics miss a number of subtleties that are
needed to truly gauge a model’s quality. Let’s take a look at sliced evaluations, a tech‐
nique to catch these subtleties, and how to use sliced evaluations to identify bias in a
model.

Sliced Evaluations
Evaluation metrics are usually calculated based on a holdout dataset that is similar to
the training dataset in distribution. This typically gives us a good overall view of
model health and quality. However, the model may perform much worse on some sli‐
ces of the data than others, and these deficiencies can be lost in the ocean of calculat‐
ing on the entire dataset.

Therefore, it can often be a good idea to analyze model quality on a more granular
level. We can do this by taking slices of the data based on classes or other separating
characteristics and calculating the usual evaluation metrics on each one of those sub‐
sets. Of course, we should still calculate the evaluation metrics using all of the data so
that we can see how individual subsets vary from the superset. You can see an exam‐
ple of these sliced evaluation metrics in Figure 8-12.

Figure 8-12. A sliced ROC curve for two different data segments compared to the overall
ROC curve.

Some use cases place special importance on certain segments of the data, so these are
prime targets to apply sliced evaluation metrics to in order to keep a close eye on
them.

Quality Evaluation | 301

This doesn’t just have to be a passive monitoring exercise, though! Once we know the
sliced evaluation metrics, we can then make adjustments to our data or model to
bring each of the sliced metrics in line with our expectations. This could be as simple
as augmenting the data more for a particular class or adding some more complexity
to the model to be able to understand those problematic slices better.

Next, we’ll look at a specific example of a segment that we may need to do sliced eval‐
uations on.

Fairness Monitoring
Image ML models have been shown to perform poorly on some segments of the pop‐
ulation. For example, a 2018 study showed that commercially available facial analysis
programs had dramatically higher error rates at identifying the gender of darker-
skinned women as compared to lighter-skinned men. In 2020, many Twitter users
reported that Twitter’s photo preview feature appears to favor white faces over Black
faces. Meanwhile, Zoom’s facial recognition appeared to remove Black faces when
using a virtual background. And in 2015, Google Photos mistakenly labeled a selfie of
a Black couple as being an image of gorillas.

Considering these high-profile and distressing mistakes by highly capable engineer‐
ing teams, it is clear that if our computer vision problems involve human subjects, we
should attempt to safeguard against such errors by carrying out sliced evaluations
where the segments consist of individuals belonging to different races and genders.
This will allow us to diagnose whether there is a problem.

Poor model performance on subjects of different genders and races cannot be
addressed simply by ensuring that all races and genders are present in the training
and evaluation datasets. There may be deeper problems. Photographic filters and pro‐
cessing techniques were historically optimized to best represent lighter skin tones,
and this causes problems with lighting effects on darker-toned individuals. Therefore,
preprocessing and data augmentation methods may have to be incorporated into our
model-training pipelines in order to correct for this effect. Also, ML model training
focuses initially on common cases, and only later on rarer examples. This means that
techniques such as early stopping, pruning, and quantization might amplify biases
against minorities. It is not, in other words, “just” a data problem. Addressing fairness
issues requires examination of the entire machine learning pipeline.

Sliced evaluations are an invaluable tool to diagnose whether such biases exist in the
models that have been trained. This means that we should perform these evaluations
for any segment of the population that we are concerned might be treated unfairly.

302 | Chapter 8: Model Quality and Continuous Evaluation

https://oreil.ly/CnSW8
https://oreil.ly/oVOZR
https://oreil.ly/oVOZR
https://oreil.ly/9v8op
https://oreil.ly/Mw5LC
https://oreil.ly/JFpNx
https://arxiv.org/abs/1911.05248

Continuous Evaluation
How often should we carry out sliced evaluations? It’s important to constantly be
evaluating our models even after we deploy them. This can help us catch things that
could be going wrong early. For instance, we might have prediction drift because the
inference input distribution is slowly shifting over time. There also could be a sudden
event that causes a major change in the data, which in turn causes the model’s behav‐
ior to change.

Continuous evaluation typically consists of seven steps:

1. Randomly sample and save the data being sent for model predictions. For exam‐
ple, we might choose to save 1% of all the images sent to the deployed model.

2. Carry out predictions with the model as usual and send them back to the client—
but make sure to also save the model’s prediction for each of the sampled images.

3. Send the samples for labeling. We can use the same labeling approach as was used
for the training data—for example, we can use a labeling service, or label the data
a few days later based on the eventual outcome.

4. Compute evaluation metrics over the sampled data, including sliced evaluation
metrics.

5. Plot moving averages of the evaluation metrics. For example, we might plot the
average Hubert loss over the past seven days.

6. Look for changes in the averaged evaluation metrics over time, or specific thresh‐
olds that are exceeded. We might choose to send out an alert, for example, if the
accuracy for any monitored segment drops below 95% or if the accuracy this
week is more than 1% lower than the accuracy the previous week.

7. We might also choose to periodically retrain or fine-tune the model after adding
the sampled and subsequently labeled data to the training dataset.

When to retrain is a decision that we need to make. Some common choices include
retraining whenever the evaluation metric falls below a certain threshold, retraining
every X days, or retraining once we have X new labeled examples.

Whether to train from scratch or just fine tune is another decision that we need to
make. The typical choice is to fine tune the model if the new samples are a small frac‐
tion of the original training data and to train from scratch once the sampled data
starts to approach about 10% of the number of examples in the original dataset.

Quality Evaluation | 303

Summary
In this chapter, we discussed the importance of monitoring our models during train‐
ing. We can use the amazing graphical UI of TensorBoard to watch our loss and other
metrics throughout training, and to verify that the model is converging and getting
better over time. Additionally, since we don’t want to overtrain our models, by creat‐
ing checkpoints and enabling early stopping we can halt training at the best moment.

We also discussed many quality metrics that we can use to evaluate our models on
unseen data to get a better measure of how well they’re doing. There are different
metrics for image classification, image regression, and object detection, although
some of them resurface in slightly different forms among the various problem types.
In fact, image classification has three different subfamilies of classification metrics,
depending on both the number of classes and the number of labels per image.

Finally, we looked at performing sliced evaluations on subsets of our data to not only
be aware of our model’s gaps but also to help us brainstorm fixes to close those gaps.
This practice can help us monitor for bias, to make sure that we are being as fair as
possible and understand the inherent risks of using our model.

304 | Chapter 8: Model Quality and Continuous Evaluation

CHAPTER 9

Model Predictions

The primary purpose of training machine learning models is to be able to use them to
make predictions. In this chapter, we will take a deep dive into several considerations
and design choices involved in deploying trained ML models and using them to make
predictions.

The code for this chapter is in the 09_deploying folder of the book’s
GitHub repository. We will provide file names for code samples
and notebooks where applicable.

Making Predictions
To invoke a trained model—i.e., to use it to make predictions—we have to load the
model from the directory into which it was exported and call the serving signature. In
this section, we will look at how to do this. We will also look at how to improve the
maintainability and performance of invoked models.

Exporting the Model
To obtain a serving signature to invoke, we must export our trained model. Let’s
quickly recap these two topics—exporting and model signatures—which were cov‐
ered in much greater detail in “Saving Model State” on page 253 in Chapter 7. Recall
that a Keras model can be exported (see the notebook 07c_export.ipynb on GitHub)
using code like this:

model.save('gs://practical-ml-vision-book/flowers_5_trained')

This saves the model in TensorFlow SavedModel format. We discussed examining the
signature of the prediction function using the command-line tool saved_model_cli.

305

https://github.com/GoogleCloudPlatform/practical-ml-vision-book
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/07_training/07c_export.ipynb

By default the signature matches the input layer of the Keras model that was saved,
but it is possible to export the model with a different function by explicitly specifying
it (see Figure 9-1):

model.save('export/flowers_model',
 signatures={
 'serving_default': predict_flower_type
 })

Figure 9-1. Exporting a model creates a SavedModel that has a default signature for
serving predictions. In this case, the model on the left is the Python object in memory,
and the SavedModel is what is persisted to disk.

The predict_flower_type() function carries a @tf.function annotation, as
explained in “Signature of a TensorFlow Function” on page 254 in Chapter 7:

@tf.function(input_signature=[tf.TensorSpec([None,], dtype=tf.string)])
def predict_flower_type(filenames):
 ...

Suppose, for the examples in the first part of this chapter, that we have exported the
model with the predict_flower_type() function as its default serving function.

Using In-Memory Models
Imagine we are programming a client that needs to call this model and obtain predic‐
tions from it for some input. The client could be a Python program from which we
wish to invoke the model. We would then load the model into our program and
obtain the default serving function as follows (full code in 09a_inmemory.ipynb on
GitHub):

serving_fn = tf.keras.models.load_model(MODEL_LOCATION
).signatures['serving_default']

If we pass in a set of filenames to the serving function, we obtain the corresponding
predictions:

306 | Chapter 9: Model Predictions

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/09_deploying/09a_inmemory.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/09_deploying/09a_inmemory.ipynb

filenames = [
 'gs://.../9818247_e2eac18894.jpg',
 ...
 'gs://.../8713397358_0505cc0176_n.jpg'
]
pred = serving_fn(tf.convert_to_tensor(filenames))

The result is a dictionary. The maximum likelihood prediction can be obtained from
the tensor by looking in the dictionary for the specific key and calling .numpy():

pred['flower_type_str'].numpy()

In this prediction situation, the model was loaded and invoked directly within the cli‐
ent program (see Figure 9-2). The input to the model had to be a tensor, and so the
client program had to create a tensor out of the filename strings. Because the output
of the model was also a tensor, the client program had to obtain a normal Python
object using .numpy().

Figure 9-2. A client program written in Python loads the SavedModel into its memory,
sends a tensor containing filenames to the in-memory model, and receives a tensor con‐
taining the predicted labels.

A few input images and their predictions are shown in Figure 9-3. Note that because
of the care we took in Chapters 5 and 7 to replicate the preprocessing operations in
the serving function, clients can send us images of any size—the server will resize the
images to what the model requires.

Making Predictions | 307

Figure 9-3. A selection of images and their corresponding predictions.

There are, nevertheless, two key problems with this in-memory approach: abstraction
and performance. Let’s look at what these problems are and how to address them.

Improving Abstraction
It is usually the case that the machine learning engineers and data scientists who
develop an ML model have different tools and skills at their disposal than the applica‐
tion developers who are integrating the ML predictions into user-facing applications.
You want the ML prediction API to be such that it can be used by someone without
any knowledge of TensorFlow or programming in React, Swift, or Kotlin. This is why
abstraction is necessary.

We have abstracted away the model’s details to some extent—the client doesn’t need
to know the required size of the images (indeed, note in Figure 9-3 that the images
are all of different sizes) or the architecture of the ML model being used for classifica‐
tion. However, the abstraction is not complete. We do have some requirements for
the client programmer:

• The client machine will need to have the TensorFlow libraries installed.
• At the time of writing, TensorFlow APIs are callable only from Python, C, Java,

Go, and JavaScript. Therefore, the client will have to be written in one of those
languages.

• Because the client programmer has to call functions like tf.convert_to_ten
sor() and .numpy(), they must understand concepts like tensor shapes and eager
execution.

To improve the abstraction, it would be better if we could invoke the model using a
protocol such as HTTPS that can be used from many languages and environments.
Also, it would be better if we could supply the inputs in a generic format such as
JSON, and obtain the results in the same format.

308 | Chapter 9: Model Predictions

https://oreil.ly/H4zVq
https://oreil.ly/WOP0O
https://oreil.ly/bRhdh
https://oreil.ly/vvODq

Improving Efficiency
In the in-memory approach, the model is loaded and invoked directly within the cli‐
ent program. So, the client will need:

• Considerable on-board memory, since image models tend to be quite large
• Accelerators such as GPUs or TPUs, as otherwise the computation will be quite

slow

As long as we make sure to run the client code on machines with enough memory
and with accelerators attached, are we OK? Not quite.

Performance problems tend to manifest themselves in four scenarios:

Online prediction
We may have many concurrent clients that need the predictions in near real time.
This is the case if we are building interactive tools, such as one that offers the
ability to load product photographs onto an ecommerce website. Since there may
be many thousands of simultaneous users, we need to ensure that the predictions
are carried out at a low latency for all these concurrent users.

Batch prediction
We might need to carry out inference on a large dataset of images. If each image
takes 300 ms to process, the inference on 10,000 images will take nearly an hour.
We might need the results faster.

Stream prediction
We might need to carry out inference on images as they stream into our system.
If we receive around 10 images a second, and it takes 100 ms to process each
image, we will barely be able to keep up with the incoming stream, so any traffic
spikes will cause the system to start falling behind.

Edge prediction
Low-connectivity clients might need the predictions in near real time. For exam‐
ple, we might need to identify defects in the parts on a factory conveyor belt even
as it is moving. For this to happen, we need the image of the belt to get processed
as quickly as possible. We may not have the network bandwidth to send that
image to a powerful machine in the cloud and get the results back within the
time budget imposed by the moving conveyor belt. This is also the situation in
cases where an app on a mobile phone needs to make a decision based on what
the phone camera is being pointed at. Because the factory or mobile phone sits
on the edge of the network, where network bandwidth isn’t as high as it would be
between two machines in a cloud data center, this is called edge prediction.

In the following sections, we’ll dive into each of these scenarios and look at techni‐
ques for dealing with them.

Making Predictions | 309

Online Prediction
For online prediction, we require a microservices architecture—model inference will
need to be carried out on powerful servers with accelerators attached. Clients will
request model inference by sending HTTP requests and receiving HTTP responses.
Using accelerators and autoscaling infrastructure addresses the performance prob‐
lem, while using HTTP requests and responses addresses the abstraction problem.

TensorFlow Serving
The recommended approach for online prediction is to deploy the model using
TensorFlow Serving as a web microservice that responds to POST requests. The
request and response will not be tensors, but abstracted into a web-native message
format such as JSON.

Deploying the model
TensorFlow Serving is just software, so we also need some infrastructure. User
requests will have to be dynamically routed to different servers, which will need to
autoscale to deal with traffic peaks. You can run TensorFlow Serving on managed
services like Google Cloud’s Vertex AI, Amazon SageMaker, or Azure ML (see
Figure 9-4). Acceleration on these platforms is available both via GPUs and through
custom-built accelerators like AWS Inferentia and Azure FPGA. Although you can
install the TensorFlow Serving module or Docker container into your favorite web
application framework, we don’t recommend this approach since you won’t get the
benefits of the optimized ML serving systems and infrastructure management that
the cloud providers’ ML platforms offer.

To deploy the SavedModel as a web service on Google Cloud, we’d point gcloud at the
Google Cloud Storage location to which the model was exported and deploy the
resulting model to a Vertex AI endpoint. Please see the code in GitHub for details.

When deploying the model, we can also specify the machine type, type of accelera‐
tors, and minimum and maximum replica counts.

310 | Chapter 9: Model Predictions

Figure 9-4. Online model predictions served through a REST API.

Making predictions
Predictions can be obtained from any machine that is capable of making an HTTPS
call to the server on which the model is deployed (see Figure 9-4). The data is sent
back and forth as JSON messages, and TensorFlow Serving converts the JSON into
tensors to send to the SavedModel.

We can try out the deployed model by creating a JSON request:

{
 "instances": [
 {
 "filenames": "gs://.../9818247_e2eac18894.jpg"
 },
 {
 "filenames": "gs://.../9853885425_4a82356f1d_m.jpg"
 },
]
}

and sending it to the server using gcloud:

gcloud ai endpoints predict ${ENDPOINT_ID} \
 --region=${REGION} \
 --json-request=request.json

One key thing to note is that the JSON request consists of a set of instances, each of
which is a dictionary. The items in the dictionary correspond to the inputs specified

Online Prediction | 311

in the model signature. We can view the model signature by running the command-
line tool saved_model_cli on the SavedModel:

saved_model_cli show --tag_set serve \
 --signature_def serving_default --dir ${MODEL_LOCATION}

In the case of the flowers model, this returns:

inputs['filenames'] tensor_info:
 dtype: DT_STRING
 shape: (-1)
 name: serving_default_filenames:0

That’s how we knew that each instance in the JSON needed a string element called
filenames.

Because this is just a REST API, it can be invoked from any programming language
that is capable of sending an HTTPS POST request. Here’s how to do it in Python:

api = ('https://{}-aiplatform.googleapis.com/v1/projects/' +
 '{}/locations/{}/endpoints/{}:predict'.format(
 REGION, PROJECT, REGION, ENDPOINT_ID))

The header contains the client’s authentication token. This can be retrieved program‐
matically using:

token = (GoogleCredentials.get_application_default()
 .get_access_token().access_token)

We have seen how to deploy the model and obtain predictions from it, but the API is
whatever signature the model was exported with. Next, let’s look at how to change
this.

Modifying the Serving Function
Currently, the flowers model has been exported so that it takes a filename as input
and returns a dictionary consisting of the most likely class (e.g., daisy), the index of
this class (e.g., 2), and the probability associated with this class (e.g., 0.3). Suppose we
wish to change the signature so that we also return the filename that the prediction is
associated with.

This sort of scenario is quite common because it is impossible to anticipate the exact
signature that we will need in production when a model is exported. In this case, we
want to pass input parameters from the client through to the response. A need for
such pass-through parameters is quite common, and different clients will want to pass
through different things.

While it is possible to go back, change the trainer program, retrain the model, and re-
export the model with the desired signature, it is more convenient to simply change
the signature of the exported model.

312 | Chapter 9: Model Predictions

Changing the default signature
To change the signature, first we load the exported model:

model = tf.keras.models.load_model(MODEL_LOCATION)

Then we define a function with the desired new signature, making sure to invoke the
old signature on the model from within the new function:

@tf.function(input_signature=[tf.TensorSpec([None,], dtype=tf.string)])
def pass_through_input(filenames):
 old_fn = model.signatures['serving_default']
 result = old_fn(filenames) # has flower_type_int etc.
 result['filename'] = filenames # pass through
 return result

If the client instead wanted to supply a sequence number and asked us to pass this
through in the response, we could do that as follows:

@tf.function(input_signature=[tf.TensorSpec([None,], dtype=tf.string),
 tf.TensorSpec([], dtype=tf.int64)])
def pass_through_input(filenames, sequenceNumber):
 old_fn = model.signatures['serving_default']
 result = old_fn(filenames) # has flower_type_int etc.
 result['filename'] = filenames # pass through
 result['sequenceNumber'] = sequenceNumber # pass through
 return result

Finally, we export the model with our new function as the serving default:

model.save(NEW_MODEL_LOCATION,
 signatures={
 'serving_default': pass_through_input
 })

We can verify the resulting signature using saved_model_cli and ensure that the file‐
name is included in the output:

outputs['filename'] tensor_info:
 dtype: DT_STRING
 shape: (-1)
 name: StatefulPartitionedCall:0

Multiple signatures
What if you have multiple clients, and each of them wants a different signature?
TensorFlow Serving allows you to have multiple signatures in a model (although only
one of them will be the serving default).

For example, suppose we want to support both the original signature and the pass-
through version. In this case, we can export the model with two signatures (see
Figure 9-5):

Online Prediction | 313

model.save('export/flowers_model2',
 signatures={
 'serving_default': old_fn,
 'input_pass_through': pass_through_input
 })

where old_fn is the original serving signature that is obtained via:

model = tf.keras.models.load_model(MODEL_LOCATION)
old_fn = model.signatures['serving_default']

Figure 9-5. Exporting a model with multiple signatures.

Clients who wish to invoke the nondefault serving signature will have to specifically
include a signature name in their requests:

{
 "signature_name": "input_pass_through",
 "instances": [
 {
 "filenames": "gs://.../9818247_e2eac18894.jpg"
 },
 ...
}

Others will get the response corresponding to the default serving function.

Handling Image Bytes
We have, so far, been sending a filename to the service and asking for the classifica‐
tion result. This works well for images that have been uploaded to the cloud already,
but can introduce friction if that’s not the case. If the image is not already in the
cloud, it would be ideal for the client code to send us the JPEG bytes corresponding
to the file contents. That way, we can avoid an intermediate step of uploading the
image data to the cloud before invoking the prediction model.

314 | Chapter 9: Model Predictions

Loading the model
To change the model in this situation, we could load the exported model and change
the input signature to be:

@tf.function(input_signature=[tf.TensorSpec([None,], dtype=tf.string)])
def predict_bytes(img_bytes):

But what would this implementation do? In order to invoke the existing model signa‐
ture, we will need the user’s file to be available to the server. So, we’d have to take the
incoming image bytes, write them to a temporary Cloud Storage location, and then
send it to the model. The model would then read this temporary file back into mem‐
ory. This is pretty wasteful—how can we get the model to directly use the bytes we are
sending it?

To do this, we need to decode the JPEG bytes, preprocess them the same way that we
did during model training, and then invoke model.predict(). For that, we need to
load the last (or best) checkpoint saved during model training:

CHECK_POINT_DIR='gs://.../chkpts'
model = tf.keras.models.load_model(CHECK_POINT_DIR)

We can also load the exported model using the same API:

EXPORT_DIR='gs://.../export'
model = tf.keras.models.load_model(EXPORT_DIR)

Adding a prediction signature
Having loaded the model, we use this model to implement the prediction function:

@tf.function(input_signature=[tf.TensorSpec([None,], dtype=tf.string)])
def predict_bytes(img_bytes):
 input_images = tf.map_fn(
 preprocess, # preprocessing function used in training
 img_bytes,
 fn_output_signature=tf.float32
)
 batch_pred = model(input_images) # same as model.predict()
 top_prob = tf.math.reduce_max(batch_pred, axis=[1])
 pred_label_index = tf.math.argmax(batch_pred, axis=1)
 pred_label = tf.gather(tf.convert_to_tensor(CLASS_NAMES),
 pred_label_index)
 return {
 'probability': top_prob,
 'flower_type_int': pred_label_index,
 'flower_type_str': pred_label
 }

In that code snippet, note that we need to get access to the preprocessing functions
used in training, perhaps by importing a Python module. The preprocessing function
has to be the same as what was used in training:

Online Prediction | 315

def preprocess(img_bytes):
 img = tf.image.decode_jpeg(img_bytes, channels=IMG_CHANNELS)
 img = tf.image.convert_image_dtype(img, tf.float32)
 return tf.image.resize_with_pad(img, IMG_HEIGHT, IMG_WIDTH)

We might as well also implement another method to predict from the filename:

@tf.function(input_signature=[tf.TensorSpec([None,], dtype=tf.string)])
def predict_filename(filenames):
 img_bytes = tf.map_fn(
 tf.io.read_file,
 filenames
)
 result = predict_bytes(img_bytes)
 result['filename'] = filenames
 return result

This function simply reads in the file (using tf.io.read_file()) and then invokes
the other prediction method.

Exporting signatures
Both of these functions can be exported, so that clients have the choice of supplying
either the filename or the byte contents:

model.save('export/flowers_model3',
 signatures={
 'serving_default': predict_filename,
 'from_bytes': predict_bytes
 })

Base64 encoding
In order to provide the contents of a local image file to the web service, we read the
file contents into memory and send them over the wire. Because it is very possible
that the JPEG files will contain special characters that will confuse the JSON parser
on the server side, it is necessary to base64-encode the file contents before sending
them (the full code is available in 09d_bytes.ipynb on GitHub):

def b64encode(filename):
 with open(filename, 'rb') as ifp:
 img_bytes = ifp.read()
 return base64.b64encode(img_bytes)

The base64-encoded data can then be incorporated into the JSON message that is
sent as follows:

data = {
 "signature_name": "from_bytes",
 "instances": [
 {
 "img_bytes": {"b64": b64encode('/tmp/test1.jpg')}
 },

316 | Chapter 9: Model Predictions

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/09_deploying/09d_bytes.ipynb

 {
 "img_bytes": {"b64": b64encode('/tmp/test2.jpg')}
 },
]
}

Note the use of the special b64 element to denote base64 encoding. TensorFlow Serv‐
ing understands this and decodes the data on the other end.

Batch and Stream Prediction
Doing batch prediction one image at a time is unacceptably slow. A better solution is
to carry out the predictions in parallel. Batch prediction is an embarrassingly parallel
problem—predictions on two images can be performed entirely in parallel because
there is no data to transfer between the two prediction routines. However, attempts to
parallelize the batch prediction code on a single machine with many GPUs often run
into memory issues because each of the threads will need to have its own copy of the
model. Using Apache Beam, Apache Spark, or any other big data processing technol‐
ogy that allows us to distribute data processing across many machines is a good way
to improve batch prediction performance.

We also need multiple machines for streaming prediction (such as in response to a
clickstream of events through Apache Kafka, Amazon Kinesis, or Google Cloud Pub/
Sub), for the same reasons that we require them for batch prediction—to carry out
inference on the images as they arrive in parallel without causing out-of-memory
problems. However, because streaming workloads tend to be spiky, we also require
this infrastructure to autoscale—we should provision more machines at traffic peaks
and scale down to a minimal number of machines at traffic lows. Apache Beam on
Cloud Dataflow provides this capability. Therefore, we suggest using Beam for
improving the performance of streaming prediction. Happily, the same code that is
used for batch prediction in Beam will also work unchanged for streaming
prediction.

The Apache Beam Pipeline
The solution to both batch and streaming prediction involves Apache Beam. We can
write a Beam transform to carry out inference as part of the pipeline:

| 'pred' >> beam.Map(ModelPredict(MODEL_LOCATION))

We can reuse the model prediction code that we used in in-memory prediction by
loading the serving function from the exported model:

class ModelPredict:
 def __init__(self, model_location):
 self._model_location = model_location

Batch and Stream Prediction | 317

 def __call__(self, filename):
 serving_fn = (tf.keras.models.load_model(self._model_location)
 .signatures['serving_default'])
 result = serving_fn(tf.convert_to_tensor([filename]))
 return {
 'filenames': filename,
 'probability': result['probability'].numpy()[0],
 'pred_label': result['flower_type_str'].numpy()[0]
 }

However, there are two issues with this code. First, we are processing the files one at a
time. TensorFlow graph operations are faster if we can carry them out in batches, so
we’ll want to batch up the filenames. Second, we are loading the model for each ele‐
ment. Ideally, we’d load the model once and reuse it. Because Beam is a distributed
system, however, we actually have to load the model once on each worker (see
Figure 9-6). To do that, we must use a shared handle (essentially a shared connection
to the service) that is acquired by each worker. This handle has to be acquired
through a weak reference so that if a worker is decommissioned (due to low traffic)
and then reactivated (due to a traffic peak), Beam does the right thing and reloads the
model in that worker.

Figure 9-6. Batch prediction uses distributed workers to process the input data in paral‐
lel. This architecture also works for stream prediction.

To use the shared handle, we modify the model prediction code as follows:

class ModelPredict:
 def __init__(self, shared_handle, model_location):
 self._shared_handle = shared_handle

318 | Chapter 9: Model Predictions

 self._model_location = model_location

 def __call__(self, filenames):
 def initialize_model():
 logging.info('Loading Keras model from ' +
 self._model_location)
 return (tf.keras.models.load_model(self._model_location)
 .signatures['serving_default'])

 serving_fn = self._shared_handle.acquire(initialize_model)
 result = serving_fn(tf.convert_to_tensor(filenames))
 return {
 'filenames': filenames,
 'probability': result['probability'].numpy(),
 'pred_label': result['flower_type_str'].numpy()
 }

The shared handle, whose capability is provided by Apache Beam, ensures that con‐
nections are reused within a worker and reacquired after passivation. In the pipeline,
we create the shared handle and make sure to batch the elements before calling model
prediction (you can see the full code in 09a_inmemory.ipynb on GitHub):

with beam.Pipeline() as p:

 shared_handle = Shared()

 (p
 | ...
 | 'batch' >> beam.BatchElements(
 min_batch_size=1, max_batch_size=32)
 | 'addpred' >> beam.Map(
 ModelPredict(shared_handle, MODEL_LOCATION))
)

The same code works for both batch and streaming predictions.

If you are grouping the images, then the groups are already a batch
of images and so there is no need to explicitly batch them:

| 'groupbykey' >> beam.GroupByKey() # (usr, [files])
| 'addpred' >> beam.Map(lambda x:
 ModelPredict(shared_handle,
 MODEL_LOCATION)(x[1]))

We can run the Apache Beam code at scale using Cloud Dataflow.

Managed Service for Batch Prediction
If we have deployed the model as a web service to support online prediction, then an
alternative to using the Beam on Dataflow batch pipeline is to also use Vertex AI to
carry out batch prediction:

Batch and Stream Prediction | 319

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/09_deploying/09a_inmemory.ipynb

gcloud ai custom-jobs create \
 --display_name=flowers_batchpred_$(date -u +%y%m%d_%H%M%S) \
 --region ${REGION} \
 --project=${PROJECT} \

--worker-pool-spec=machine-type='n1-highmem-2',container-image-uri=${IMAGE}

Performance-wise, the best approach depends on the accelerators that are available in
your online prediction infrastructure versus what is available in your big data infra‐
structure. Since online prediction infrastructure can use custom ML chips, this
approach tends to be better. Also, Vertex AI batch prediction is easier to use because
we don’t have to write code to handle batched requests.

Invoking Online Prediction
Writing our own batch prediction pipeline in Apache Beam is more flexible because
we can do additional transformations in our pipeline. Wouldn’t it be great if we could
combine the Beam and REST API approaches?

We can do this by invoking the deployed REST endpoint from the Beam pipeline
instead of invoking the model that is in memory (the full code is in 09b_rest.ipynb on
GitHub):

class ModelPredict:
 def __init__(self, project, model_name, model_version):
 self._api = ('https://ml.googleapis.com/...:predict'
 .format(project, model_name, model_version))

 def __call__(self, filenames):
 token = (GoogleCredentials.get_application_default()
 .get_access_token().access_token)
 data = {
 "instances": []
 }
 for f in filenames:
 data['instances'].append({
 "filenames" : f
 })
 headers = {'Authorization': 'Bearer ' + token }
 response = requests.post(self._api, json=data, headers=headers)
 response = json.loads(response.content.decode('utf-8'))
 for (a,b) in zip(filenames, response['predictions']):
 result = b
 result['filename'] = a
 yield result

If we combine the Beam approach with the REST API approach as shown here, we
will be able to support streaming predictions (something the managed service doesn’t
do). We also gain a couple of performance advantages:

320 | Chapter 9: Model Predictions

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/09_deploying/09b_rest.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/09_deploying/09b_rest.ipynb

• A deployed online model can be scaled according to the computational needs of
the model. Meanwhile, the Beam pipeline can be scaled on the data rate. This
ability to independently scale the two parts can lead to cost savings.

• A deployed online model can make more effective use of GPUs because the entire
model code is on the TensorFlow graph. Although you can run the Dataflow
pipeline on GPUs, GPU use is less effective because the Dataflow pipeline does
many other things (like reading data, grouping keys, etc.) that do not benefit
from GPU acceleration.

These two performance benefits have to be balanced against the increased network‐
ing overhead, however—using an online model adds a network call from the Beam
pipeline to the deployed model. Measure the performance to determine whether the
in-memory model is better for your needs than the REST model. In practice, we have
observed that the larger the model is, and the more instances there are in the batch,
the greater are the performance advantages of invoking the online model from Beam
rather than hosting the model in memory.

Edge ML
Edge ML is becoming increasingly important because the number of devices with
computational capabilities has been growing dramatically in recent years. These
include smartphones, connected appliances in homes and factories, and instruments
placed outdoors. If these edge devices have a camera, then they are candidates for
machine learning use cases on images.

Constraints and Optimizations
Edge devices tend to have a few constraints:

• They may have no connectivity to the internet, and even if they do have connec‐
tivity, the connection might be spotty and have low bandwidth. It is, therefore,
necessary to carry out ML model inference on the device itself so that we do not
wait for the duration of a round trip to the cloud.

• There may be privacy constraints, and it may be desired that image data never
leaves the device.

• Edge devices tend to have limited memory, storage, and computing power (at
least compared to typical desktop or cloud machines). Therefore, the model
inference has to be done in an efficient way.

• The use case often requires that the device have low cost, be small, use very little
power, and not get too hot.

Edge ML | 321

For edge prediction, therefore, we need a low-cost, efficient, on-device ML accelera‐
tor. In some cases, the accelerator will already be built in. For example, modern
mobile phones tend to have an on-board GPU. In other cases, we will have to incor‐
porate an accelerator into the design of the instrument. We can buy edge accelerators
to attach or incorporate into instruments (such as cameras and X-ray scanners) when
they are being built.

In conjunction with selecting fast hardware, we also need to ensure that we do not
overtax the device. We can do that by taking advantage of approaches that reduce the
computational requirements of image models so that they operate efficiently on the
edge.

TensorFlow Lite
TensorFlow Lite is a software framework for carrying out TensorFlow model infer‐
ence on edge devices. Note that TensorFlow Lite is not a version of TensorFlow—we
cannot train models using TensorFlow Lite. Instead, we train a model using regular
TensorFlow, and then convert the SavedModel into an efficient form for use on edge
devices (see Figure 9-7).

Figure 9-7. Creating an edge-runnable ML model.

To convert a SavedModel file into a TensorFlow Lite file, we need to use the tf.lite
converter tool. We can do so from Python as follows:

converter = tf.lite.TFLiteConverter.from_saved_model(MODEL_LOCATION)
tflite_model = converter.convert()
with open('export/model.tflite', 'wb') as ofp:
 ofp.write(tflite_model)

322 | Chapter 9: Model Predictions

In order to get efficient edge predictions, we need to do two things. First, we should
make sure to use an edge-optimized model such as MobileNet. MobileNet tends to be
about 40x faster than models like Inception thanks to optimizations such as pruning
connections during training and using a piecewise linear approximation of the activa‐
tion function (see Chapter 3).

Second, we should carefully select how to quantize the model weights. The appropri‐
ate choice for quantization depends on the device to which we are deploying the
model. For example, the Coral Edge TPU works best if we quantize the model weights
to integers. We can do quantization to integers by specifying some options on the
converter:

converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = training_dataset.take(100)
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.int8 # or tf.uint8
converter.inference_output_type = tf.int8 # or tf.uint8
tflite_model = converter.convert()

In this code, we ask the optimizer to look at one hundred representative images (or
whatever the model input is) from our training dataset to determine how best to
quantize the weights without losing the model’s predictive power. We also ask the
conversion process to use only int8 arithmetic, and specify that the input and output
types for the model will be int8.

Quantizing the model weights from float32 to int8 allows the Edge TPU to use one-
fourth the memory and to accelerate the arithmetic by carrying it out on integers,
which is an order of magnitude faster than using floats. Quantization tends to incur
about a 0.2 to 0.5% loss in accuracy, although this depends on the model and dataset.

Once we have a TensorFlow Lite model file, we download the file to the edge device
or package the model file with the application that is installed onto the device.

Running TensorFlow Lite
To obtain predictions from the model, the edge devices need to run a TensorFlow Lite
interpreter. Android comes with an interpreter written in Java. To do inference from
within an Android program, we can do:

try (Interpreter tflite = new Interpreter(tf_lite_file)) {
 tflite.run(inputImageBuffer.getBuffer(), output);
}

Similar interpreters for iOS are available in Swift and Objective-C.

Edge ML | 323

https://oreil.ly/0GYY0

1 Pete Warden and Daniel Situnayake, TinyML (O’Reilly, 2019).

The ML Kit framework supports many common edge uses, like
text recognition, barcode scanning, face detection, and object
detection. ML Kit is well integrated with Firebase, a popular soft‐
ware development kit (SDK) for mobile applications. Before you
roll your own ML solution, check that it is not already available in
ML Kit.

For non-phone devices, use the Coral Edge TPU. At the time of writing, the Coral
Edge TPU is available in three forms:

• A dongle that can be attached via USB3 to an edge device such as a Raspberry Pi
• A baseboard with Linux and Bluetooth
• A standalone chip that is small enough to be soldered onto an existing board

The Edge TPU tends to provide a 30–50x speedup over a CPU.

Using the TensorFlow Lite interpreter on Coral involves setting and retrieving the
interpreter state:

interpreter = make_interpreter(path_to_tflite_model)
interpreter.allocate_tensors()
common.set_input(interpreter, imageBuffer)
interpreter.invoke()
result = classify.get_classes(interpreter)

To run models on microcontrollers like Arduino, use TinyML,1 not
TensorFlow Lite. A microcontroller is a small computer on a single
circuit board and does not require any operating system. TinyML
provides a customized TensorFlow library designed to run on
embedded devices without an operating system and only tens of
kilobytes of memory. TensorFlow Lite, on the other hand, is a set of
tools that optimize ML models to run on edge devices that do have
an operating system.

Processing the Image Buffer
On the edge device we will have to process the image in the camera buffer directly, so
we will be processing only one image at a time. Let’s change the serving signature
appropriately (full code in 09e_tflite.ipynb on GitHub):

324 | Chapter 9: Model Predictions

https://oreil.ly/9c3xb
https://learning.oreilly.com/library/view/tinyml/9781492052036/
https://oreil.ly/lppxk
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/09_deploying/09e_tflite.ipynb

@tf.function(input_signature=[
 tf.TensorSpec([None, None, 3], dtype=tf.float32)])
def predict_flower_type(img):
 img = tf.image.resize_with_pad(img, IMG_HEIGHT, IMG_WIDTH)
 ...
 return {
 'probability': tf.squeeze(top_prob, axis=0),
 'flower_type': tf.squeeze(pred_label, axis=0)
 }

We then export it:

model.save(MODEL_LOCATION,
 signatures={
 'serving_default': predict_flower_type
 })

and convert this model to TensorFlow Lite.

Federated Learning
With TensorFlow Lite, we trained the model on the cloud and converted the cloud-
trained model to a file format that was copied over to the edge device. Once the
model is on the edge device, it is no longer retrained. However, data drift and model
drift will occur on edge ML models just as they do on cloud models. Therefore, we
will have to plan on saving at least a sample of the images to a disk on the device, and
periodically retrieving the images to a centralized location.

Recall, though, that one of the reasons to carry out inference on the edge is to support
privacy-sensitive use cases. What if we don’t want the image data to ever leave the
device?

One solution to this privacy concern is federated learning. In federated learning, devi‐
ces collaboratively learn a shared prediction model while each of the devices keeps its
training data on-device. Essentially, each device computes a gradient update and
shares only the gradient (not the original image) with its neighbors, or federation. The
gradient updates across multiple devices are averaged by one or more members of the
federation, and only the aggregate is sent to the cloud. It is also possible for a device
to further fine-tune the shared prediction model based on interactions that happen
on the device (see Figure 9-8). This allows for privacy-sensitive personalization to
happen on each device.

Edge ML | 325

Figure 9-8. In federated learning, the model on the device (A) is improved based on both
its own interactions and data from many other devices, but data never leaves the device.
Many users’ updates are aggregated (B) to form a consensus change (C) to the shared
model, after which the procedure is repeated. Image courtesy of the Google AI Blog.

Even with this approach, model attacks could still extract some sensitive information
out of the trained model. To further boost privacy protection, federated learning can
be combined with differential privacy. An open source framework to implement fed‐
erated learning is available in the TensorFlow repository.

Summary
In this chapter, we looked at how to invoke a trained model. We improved the
abstraction provided by the prediction API and discussed how to improve the infer‐
ence performance. For batch predictions, we suggested using a big data tool like
Apache Beam and distributing the predictions over many machines.

For scaled concurrent, real-time predictions, we suggested deploying the model as a
microservice using TensorFlow Serving. We also discussed how to change the signa‐
ture of the model to support multiple requirements, and to accept image byte data
sent directly over the wire. We also demonstrated making the model more efficient
for deploying to the edge using TensorFlow Lite.

At this point, we have covered all the steps of the typical machine learning pipeline,
from dataset creation to deployment for predictions. In the next chapter, we will look
at a way to tie them all together into a pipeline.

326 | Chapter 9: Model Predictions

https://oreil.ly/tBoB0
https://arxiv.org/abs/1412.7584
https://oreil.ly/D5UQC

CHAPTER 10

Trends in Production ML

So far in this book, we have looked at computer vision as a problem to be solved by
data scientists. Because machine learning is used to solve real-world business prob‐
lems, however, there are other roles that interface with data scientists to carry out
machine learning—for example:

ML engineers
ML models built by data scientists are put into production by ML engineers, who
tie together all the steps of a typical machine learning workflow, from dataset cre‐
ation to deployment for predictions, into a machine learning pipeline. You will
often hear this being described as MLOps.

End users
People who make decisions based on ML models tend to not trust black-box AI
approaches. This is especially true in domains such as medicine, where end users
are highly trained specialists. They will often require that your AI models are
explainable—explainability is widely considered a prerequisite for carrying out
AI responsibly.

Domain experts
Domain experts can develop ML models using code-free frameworks. As such,
they often help with data collection, validation, and problem viability assessment.
You may hear this being described as ML being “democratized” through no-code
or low-code tools.

In this chapter, we’ll look at how the needs and skills of people in these adjacent roles
increasingly affect the ML workflow in production settings.

327

The code for this chapter is in the 10_mlops folder of the book’s
GitHub repository. We will provide file names for code samples
and notebooks where applicable.

Machine Learning Pipelines
Figure 10-1 shows a high-level view of the machine learning pipeline. In order to cre‐
ate a web service that takes an image file and identifies the flower in it, as we have
depicted throughout this book, we need to perform the following steps:

• Create our dataset by converting our JPEG images into TensorFlow Records, with
the data split into training, validation, and test datasets.

• Train an ML model to classify flowers (we carried out hyperparameter tuning to
select the best model, but let’s assume that we can predetermine the parameters).

• Deploy the model for serving.

Figure 10-1. The end-to-end ML pipeline.

As you’ll see in this section, in order to complete these steps in an ML pipeline we
have to:

• Set up a cluster on which to execute the pipeline.
• Containerize our codebase, since the pipeline executes containers.
• Write pipeline components corresponding to each step of the pipeline.
• Connect the pipeline components so as to run the pipeline in one go.
• Automate the pipeline to run in response to events such as the arrival of new

data.

First, though, let’s discuss why we need an ML pipeline in the first place.

328 | Chapter 10: Trends in Production ML

https://github.com/GoogleCloudPlatform/practical-ml-vision-book

The Need for Pipelines
After we have trained our model on the original dataset, what happens if we get a few
hundred more files to train on? We need to carry out the same set of operations to
process those files, add them to our datasets, and retrain our model. In a model that
depends heavily on having fresh data (say, one used for product identification rather
than flower classification), we might need to perform these steps on a daily basis.

As new data arrives for a model to make predictions on, it is quite common for the
model’s performance to start to degrade because of data drift—that is, the newer data
might be different from the data it was trained on. Perhaps the new images are of a
higher resolution, or from a season or place we don’t have in our training dataset. We
can also anticipate that a month from now, we’ll have a few more ideas that we will
want to try. Perhaps one of our colleagues will have devised a better augmentation fil‐
ter that we want to incorporate, or a new version of MobileNet (the architecture we
are doing transfer learning from) might have been released. Experimentation to
change our model’s code will be quite common and will have to be planned for.

Ideally, we’d like a framework that will help us schedule and operationalize our ML
pipelines and allow for constant experimentation. Kubeflow Pipelines provides a soft‐
ware framework that can represent any ML pipeline we choose in its domain-specific
language (DSL). It runs on Kubeflow, a Kubernetes framework optimized for running
TensorFlow models (see Figure 10-2). The managed Kubeflow Pipelines executor on
Google Cloud is called Vertex Pipelines. The pipeline itself can execute the steps on
the Kubernetes cluster (for on-premises work) or call out to Vertex Training, Vertex
Prediction, and Cloud Dataflow on Google Cloud. Metadata about experiments and
steps can be stored in the cluster itself, or in Cloud Storage and Cloud SQL.

Figure 10-2. The Kubeflow Pipelines API runs on TensorFlow and Kubernetes.

Machine Learning Pipelines | 329

Most ML pipelines follow a pretty standard set of steps: data valida‐
tion, data transformation, model training, model evaluation, model
deployment, and model monitoring. If your pipeline follows these
steps, you can take advantage of the higher-level abstractions
TensorFlow Extended (TFX) provides in the form of Python APIs.
This way, you don’t need to work at the level of the DSL and con‐
tainerized steps. TFX is beyond the scope of this book.

Kubeflow Pipelines Cluster
To execute Kubeflow pipelines, we need a cluster. We can set one up on Google Cloud
by navigating to the AI Platform Pipelines console and creating a new instance. Once
started, we will get a link to open up the Pipelines dashboard and a Settings icon that
provides the host URL (see Figure 10-3).

Figure 10-3. AI Platform Pipelines provides a managed execution environment for
Kubeflow Pipelines.

We can develop pipelines in a Jupyter notebook, then deploy them to the cluster. Fol‐
low along with the full code in 07e_mlpipeline.ipynb on GitHub.

Containerizing the Codebase
Once we have our cluster, the first step of our pipeline needs to transform the JPEG
files into TensorFlow Records. Recall that we wrote an Apache Beam program called
jpeg_to_tfrecord.py in Chapter 5 to handle this task. In order to make this repeatable,
we need to make it a container where all the dependencies are captured.

We developed it in a Jupyter notebook, and fortunately the Notebooks service on Ver‐
tex AI releases a container image corresponding to each Notebook instance type.

330 | Chapter 10: Trends in Production ML

https://oreil.ly/1AOvG
https://oreil.ly/SYUlx
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/07_training/07e_mlpipeline.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/05_create_dataset/jpeg_to_tfrecord.py

Therefore, to build a container that is capable of executing that program, we need to
do the following:

• Get the container image corresponding to the Notebook instance.
• Install any additional software dependencies. Looking through all our notebooks,

we see that we need to install two additional Python packages: apache-
beam[gcp] and cloudml-hypertune.

• Copy over the script. Because we will probably need other code from the reposi‐
tory as well for other tasks, it’s probably better to copy over the entire repository.

This Dockerfile (the full code is in Dockerfile on GitHub) performs those three steps:

FROM gcr.io/deeplearning-platform-release/tf2-gpu
RUN python3 -m pip install --upgrade apache-beam[gcp] cloudml-hypertune
RUN mkdir -p /src/practical-ml-vision-book
COPY . /src/practical-ml-vision-book/

Those of you familiar with Dockerfiles will recognize that there is
no ENTRYPOINT in this file. That’s because we will set up the entry
point in the Kubeflow component—all the components for our
pipeline will use this same Docker image.

We can push the Docker image to a container registry using standard Docker func‐
tionality:

full_image_name=gcr.io/${PROJECT_ID}/practical-ml-vision-book:latest
docker build -t "${full_image_name}" .
docker push "$full_image_name"

Writing a Component
For every component that we need, we’ll first load its definition from a YAML file and
then use it to create the actual component.

The first component we need to create is the dataset (see Figure 10-1). From Chap‐
ter 5, we know that the step involves running jpeg_to_tfrecord.py. We define the com‐
ponent in a file named create_dataset.yaml. It specifies these input parameters:

inputs:
- {name: runner, type: str, default: 'DirectRunner', description: 'DirectRunner…'}
- {name: project_id, type: str, description: 'Project to bill Dataflow job to'}
- {name: region, type: str, description: 'Region to run Dataflow job in'}
- {name: input_csv, type: GCSPath, description: 'Path to CSV file'}
- {name: output_dir, type: GCSPath, description: 'Top-level directory…'}
- {name: labels_dict, type: GCSPath, description: 'Dictionary file…'}

Machine Learning Pipelines | 331

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/Dockerfile

It also specifies the implementation, which is to call a script called create_dataset.sh
that you’ll find in create_dataset.sh on GitHub. The arguments to the script are con‐
structed from the inputs to the component:

implementation:
 container:
 image: gcr.io/[PROJECT-ID]/practical-ml-vision-book:latest
 command: [
 "bash",
 "/src/practical-ml-vision-book/.../create_dataset.sh"
]
 args: [
 {inputValue: output_dir},
 {outputPath: tfrecords_topdir},
 "--all_data", {inputValue: input_csv},
 "--labels_file", {inputValue: labels_dict},
 "--project_id", {inputValue: project_id},
 "--output_dir", {inputValue: output_dir},
 "--runner", {inputValue: runner},
 "--region", {inputValue: region},
]

The create_dataset.sh script simply forwards everything to the Python program:

cd /src/practical-ml-vision-book/05_create_dataset
python3 -m jpeg_to_tfrecord $@

Why do we need the extra level of indirection here? Why not simply specify python3
as the command (instead of the bash call to the shell script)? That’s because, besides
just calling the converter program, we also need to perform additional functionality
like creating folders, passing messages to subsequent steps of our Kubeflow pipelines,
cleaning up intermediate files, and so on. Rather than update the Python code to add
unrelated Kubeflow Pipelines functionality to it, we’ll wrap the Python code within a
bash script that will do the setup, message passing, and teardown. More on this
shortly.

We will call the component from the pipeline as follows:

create_dataset_op = kfp.components.load_component_from_file(
 'components/create_dataset.yaml'
)
create_dataset = create_dataset_op(
 runner='DataflowRunner',
 project_id=project_id,
 region=region,
 input_csv='gs://cloud-ml-data/img/flower_photos/all_data.csv',
 output_dir='gs://{}/data/flower_tfrecords'.format(bucket),
 labels_dict='gs://cloud-ml-data/img/flower_photos/dict.txt'
)

332 | Chapter 10: Trends in Production ML

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/10_mlops/components/create_dataset.sh

If we pass in DirectRunner instead of DataflowRunner, the Apache
Beam pipeline executes on the Kubeflow cluster itself (albeit slowly
and on a single machine). This is useful for executing on premises.

Given the create_dataset_op component that we have just created, we can create a
pipeline that runs this component as follows:

create_dataset_op = kfp.components.load_component_from_file(
 'components/create_dataset.yaml'
)

@dsl.pipeline(
 name='Flowers Transfer Learning Pipeline',
 description='End-to-end pipeline'
)
def flowerstxf_pipeline(
 project_id=PROJECT,
 bucket=BUCKET,
 region=REGION
):
 # Step 1: Create dataset
 create_dataset = create_dataset_op(
 runner='DataflowRunner',
 project_id=project_id,
 region=region,
 input_csv='gs://cloud-ml-data/img/flower_photos/all_data.csv',
 output_dir='gs://{}/data/flower_tfrecords'.format(bucket),
 labels_dict='gs://cloud-ml-data/img/flower_photos/dict.txt'
)

We then compile this pipeline into a .zip file:

pipeline_func = flowerstxf_pipeline
pipeline_filename = pipeline_func.__name__ + '.zip'
import kfp.compiler as compiler
compiler.Compiler().compile(pipeline_func, pipeline_filename)

and submit that file as an experiment:

import kfp
client = kfp.Client(host=KFPHOST)
experiment = client.create_experiment('from_notebook')
run_name = pipeline_func.__name__ + ' run'
run_result = client.run_pipeline(
 experiment.id,
 run_name,
 pipeline_filename,
 {
 'project_id': PROJECT,
 'bucket': BUCKET,
 'region': REGION

Machine Learning Pipelines | 333

 }
)

We can also upload the .zip file, submit the pipeline, and carry out experiments and
runs using the Pipelines dashboard.

Connecting Components
We now have the first step of our pipeline. The next step (see Figure 10-1) is to train
an ML model on the TensorFlow Records created in the first step.

The dependency between the create_dataset step and the train_model step is
expressed as follows:

create_dataset = create_dataset_op(...)
train_model = train_model_op(
 input_topdir=create_dataset.outputs['tfrecords_topdir'],
 region=region,
 job_dir='gs://{}/trained_model'.format(bucket)
)

In this code, notice that one of the inputs to train_model_op() depends on the out‐
put of create_dataset. Connecting the two components in this manner makes
Kubeflow Pipelines wait for the create_dataset step to complete before starting the
train_model step.

The underlying implementation involves the create_dataset step writing out the
value for the tfrecords_topdir into a local temporary file whose name will be auto‐
matically generated by Kubeflow Pipelines. So, our create_dataset step will have to
take this additional input and populate the file. Here’s how we write the output direc‐
tory name to the file in create_dataset.sh (the parameters for Kubeflow to provide to
this script are specified in the YAML file):

#!/bin/bash -x
OUTPUT_DIR=$1
shift
COMPONENT_OUT=$1
shift

run the Dataflow pipeline
cd /src/practical-ml-vision-book/05_create_dataset
python3 -m jpeg_to_tfrecord $@

for subsequent components
mkdir -p $(dirname $COMPONENT_OUT)
echo "$OUTPUT_DIR" > $COMPONENT_OUT

The script writes the name of the output directory to the component output file,
removes the two parameters from the command-line arguments (that’s what the

334 | Chapter 10: Trends in Production ML

shift does in bash), and passes along the rest of the command-line parameters to
jpeg_to_tfrecord.

The train_model step is similar to the create_dataset step in that it uses the code‐
base container and invokes a script to train the model:

name: train_model_caip
...
implementation:
 container:
 image: gcr.io/[PROJECT-ID]/practical-ml-vision-book:latest
 command: [
 "bash",
 "/src/practical-ml-vision-book/.../train_model_caip.sh",
]
 args: [
 {inputValue: input_topdir},
 {inputValue: region},
 {inputValue: job_dir},
 {outputPath: trained_model},
]

We can turn this into a local training run on the cluster by replac‐
ing the call to Vertex AI Training by a call to gcloud ai-platform
local. See train_model_kfp.sh in the book’s GitHub repository for
details.

The script writes out the directory in which the trained model is stored:

echo "${JOB_DIR}/flowers_model" > $COMPONENT_OUT

The deploy step does not require any custom code. To deploy the model, we can use
the deploy operator that comes with Kubeflow Pipelines:

deploy_op = kfp.components.load_component_from_url(
 'https://.../kubeflow/pipelines/.../deploy/component.yaml')
deploy_model = deploy_op(
 model_uri=train_model.outputs['trained_model'],
 model_id='flowers',
 version_id='txf',
 ...)

As the pipeline is run, the logs, steps, and artifacts passed between steps show up in
the console (see Figure 10-4).

Machine Learning Pipelines | 335

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/07_training/components/train_model_kfp.sh

Figure 10-4. Information about a pipeline that has been run is displayed in the Vertex
Pipelines console.

Automating a Run
Because we have a Python API to submit new runs of an experiment, it is quite
straightforward to incorporate this Python code into a Cloud Function or a Cloud
Run container. The function will then get invoked in response to a Cloud Scheduler
trigger, or whenever new files are added to a storage bucket.

Caching in Kubeflow
The results of previous runs are cached and simply returned back if a component is
run again with the same set of inputs and output strings. Unfortunately, Kubeflow
Pipelines doesn’t check the contents of Google Cloud Storage directories, so it doesn’t
know that the contents of a bucket may have changed even if the input parameter (the
bucket) remains the same. Therefore, the caching tends to be of limited use. Because
of that, you might want to explicitly set staleness criteria for the cache:

create_dataset.execution_options.caching_strategy.max_cache_staleness = "P7D"

The time duration for which data should be cached is represented in ISO 8601 for‐
mat. P7D, for example, indicates that the output should be cached for 7 days. To effec‐
tively use caching, you have to incorporate timestamps into the names of your input
and output directories.

336 | Chapter 10: Trends in Production ML

https://oreil.ly/yHek7
https://oreil.ly/yHek7

The experiment-launching code can also be invoked in response to continuous inte‐
gration (CI) triggers (such as GitHub/GitLab Actions) to carry out retraining any
time new code is committed. The necessary continuous integration, continuous
deployment (CD), permission management, infrastructure authorization, and
authentication together form the realm of MLOps. MLOps is beyond the scope of this
book, but the ML Engineering on Google Cloud Platform, MLOps on Azure, and
Amazon SageMaker MLOps Workshop GitHub repositories contain instructions to
help get you started on the respective platforms.

We have seen how pipelines address the need of ML engineers to tie together all the
steps of a typical machine learning workflow into an ML pipeline. Next, let’s look at
how explainability meets the needs of decision makers.

Explainability
When we present an image to our model, we get a prediction. But why do we get that
prediction? What is the model using to decide that a flower is a daisy or a tulip?
Explanations of how AI models work are useful for several reasons:

Trust
Human users may not trust a model that doesn’t explain what it is doing. If an
image classification model says that an X-ray depicts a fracture but does not
point out the exact pixels it used to make its determination, few doctors will trust
the model.

Troubleshooting
Knowing what parts of an image are important to make a determination can be
useful to diagnose why the model is making an error. For example, if a dog is
identified as a fox, and the most relevant pixels happen to be of snow, it is likely
that the model has wrongly learned to associate the background (snow) with
foxes. To correct this error we will have to collect examples of foxes in other sea‐
sons or dogs in snow, or augment the dataset by pasting foxes and dogs into each
others’ scenes.

Bias busting
If we are using image metadata as input to our model, examining the importance
of features associated with sensitive data can be very important to determining
sources of bias. For example, if a model to identify traffic violations treats pot‐
holes in the road as an important feature, this might be because the model is
learning the biases in the training dataset (perhaps more tickets were handed out
in poorer/less well maintained areas than in wealthy ones).

There are two types of explanations: global and instance-level. The term global here
highlights that these explanations are a property of the whole model after training, as
opposed to each individual prediction at inference time. These methods rank the

Explainability | 337

https://oreil.ly/Vy94n
https://oreil.ly/lf6ea
https://oreil.ly/9Cym0

inputs to the model by the extent to which they explain the variance of the predic‐
tions. For example, we may say that feature1 explains 36% of the variance, feature2
23%, and so on. Because global feature importance is based on the extent to which
different features contribute to the variance, these methods are calculated on a dataset
consisting of many examples, such as the training or the validation dataset. However,
global feature importance methods are not that useful in computer vision because
there are no explicit, human-readable features when images are directly used as
inputs to models. We will therefore not consider global explanations any further.

The second type of explanation is a measure of instance-level feature importance.
These explanations attempt to explain each individual prediction and are invaluable
in fostering user trust and for troubleshooting errors. These methods are more com‐
mon in image models, and will be covered next.

Techniques
There are four methods that are commonly employed to interpret or explain the pre‐
dictions of image models. In increasing order of sophistication, they are:

• Local Interpretable Model-agnostic Explanations (LIME)
• Kernel Shapley Additive Explanations (KernelSHAP)
• Integrated Gradients (IG)
• Explainable Representations through AI (xRAI)

Let’s look at each of these in turn.

LIME
LIME perturbs the input image by first identifying patches of the image that consist
of contiguous similar pixels (see Figure 10-5), then replacing some of the patches
with a uniform value, essentially removing them. It then asks the model to make a
prediction on the perturbed image. For each perturbed image, we get a classification
probability. These probabilities are spatially weighted based on how similar the per‐
turbed image is to the original. Finally, LIME presents the patches with the highest
positive weights as the explanation.

338 | Chapter 10: Trends in Production ML

https://oreil.ly/kZi7q
https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1703.01365
https://arxiv.org/abs/2012.06006

Figure 10-5. How LIME works, adapted from Ruberio et al., 2016. In the bottom panel,
p represents the predicted probability of the image being that of a frog.

KernelSHAP
KernelSHAP is similar to LIME, but it weights the perturbed instances differently.
LIME weights instances that are similar to the original image very low, on the theory
that they possess very little extra information. KernelSHAP, on the other hand,
weights the instances based on a distribution derived from game theory. The more
patches are included in a perturbed image, the less weight the instance gets because
theoretically any of those patches could have been important. In practice, Kernel‐
SHAP tends to be computationally much more expensive than LIME but provides
somewhat better results.

Explainability | 339

https://oreil.ly/xMFO7

Integrated Gradients
IG uses the gradient of the model to identify which pixels are important. A property
of deep learning is that the training initially focuses on the most important pixels
because the error rate can be reduced the most by using their information in the out‐
put. Therefore, high gradients are associated with important pixels at the start of
training. Unfortunately, neural networks converge during training, and during con‐
vergence the network keeps the weights corresponding to the important pixels
unchanged and focuses on rarer situations. This means that the gradients corre‐
sponding to the most important pixels are actually close to zero at the end of training!
Therefore, IG needs the gradient not at the end of training, but over the entire train‐
ing process. However, the only weights that are available in the SavedModel file are
the final weights. So, how can IG use the gradient to identify important pixels?

IG is based on the intuition that the model will output the a priori class probability if
provided a baseline image that consists of all 0s, all 1s, or random values in the range
[0, 1]. The overall gradient change is computed numerically by changing each pixel’s
value from the baseline value to the actual input in several steps and computing the
gradient for each such change. The pixels with the highest gradients integrated over
the change from the baseline value to the actual pixel value are then depicted on top
of the original image (see Figure 10-6).

Figure 10-6. Integrated Gradients on a panda image (left) and on a fireboat image
(right). Images from the IG TensorFlow tutorial.

340 | Chapter 10: Trends in Production ML

https://oreil.ly/vPhBi

Choosing an appropriate baseline image is critical when using IG.
The explanation is relative to the baseline, so you should not use an
all-white or all-black image as a baseline if your training data con‐
tains a lot of black (or white) regions that convey meaning in the
images. As an example, black areas in X-rays correspond to tissue.
You should use a baseline of random pixels in that case. On the
other hand, if your training data contains a lot of high-variance
patches that convey meaning in the image, you might not want to
use random pixels as a baseline. It’s worth trying different base‐
lines, as this can significantly affect the quality of your attributions.

The output of IG on two images was shown in Figure 10-6. In the first image, IG
identifies the snout and fur texture of the panda’s face as the pixels that play the most
important part in determining that the image is of a panda. The second image, of a
fireboat, shows how IG can be used for troubleshooting. Here, the fireboat is correctly
identified as a fireboat, but the method uses the jets of water from the boat as the key
feature. This indicates that we may need to collect images of fireboats that are not
actively shooting water up in the air.

However, in practice (as we will see shortly), IG tends to pick up on high-information
areas in the images regardless of whether that information is used by the model for
classifying the specific image.

xRAI
In xRAI, the weights and biases of the trained neural network are used to train an
interpretation network. The interpretation network outputs a choice among a family
of algebraic expressions (such as Booleans and low-order polynomials) that are well
understood. Thus, xRAI aims to find a close approximation to the original trained
model from within the family of simple functions. This approximation, rather than
the original model, is then interpreted.

The xRAI method combines the benefits of the preprocessing method of LIME and
KernelSHAP to find patches in the image with the pixel-level attribution against a
baseline image that IG provides (see Figure 10-7). The pixel-level attribution is inte‐
grated among all the pixels that form a patch, and these patches are then combined
into regions based on having similar levels of integrated gradients. The regions are
then removed from the input image and the model is invoked in order to determine
how important each region is, and the regions are ordered based on how important
they are to the given prediction.

Explainability | 341

Figure 10-7. xRAI combines the patch-based preprocessing of LIME and KernelSHAP
with the pixel-wise attributions of IG and ranks regions based on their effect on the pre‐
diction. Image adapted from the Google Cloud documentation.

IG provides pixel-wise attributions. xRAI provides region-based attributions. Both
have their uses. In a model identifying diseased regions of an eye (the diabetic retin‐
opathy use case), for example, knowing the specific pixels that caused the diagnosis is
very useful, so use IG. IG tends to work best on low-contrast images like X-rays or
scientific images taken in a lab.

In natural images where you’re detecting the type of animal depicted, for example,
region-based attributions are preferred, so use xRAI. We do not recommend using IG
on natural images like pictures taken in nature or around the house.

Figure 10-8. Tracin works by identifying key proponents and opponents that impact the
training loss on a selected training example. Proponents are associated with a reduction
in loss. Image courtesy of the Google AI Blog.

342 | Chapter 10: Trends in Production ML

https://oreil.ly/RvZrG
https://oreil.ly/OtbBf

Let’s now look at how to get explanations for our flowers’ model’s predictions using
these techniques.

Tracing ML Training for Proponents and Opponents
All the explainability methods covered in the main text are about explaining predic‐
tions after the model is deployed. Recently, researchers at Google published an inter‐
esting paper that describes a method called Tracin that can be used to explain the
model’s behavior on training examples during the training process.

As shown in Figure 10-8, the underlying idea is to pick a single training example
(such as the zucchini image to the left of the y-axis) and look for changes in the loss
on that training example as weights are updated. Tracin identifies individual training
examples that cause changes in the predicted class of individual training examples or
changes in the direction of the loss. Examples that cause reduction in loss (i.e.,
improve the predictions) are called proponents, and those that cause the loss to
increase are called opponents. Opponents tend to be similar images that belong to
another class, and proponents tend to be similar images that belong to the same class
as the selected training example. Exceptions to this rule tend to be mislabeled exam‐
ples and outliers.

Adding Explainability
Because image explainability is associated with individual predictions, we recom‐
mend that you use an ML deployment platform that carries out one or all of the
explainability techniques mentioned in the previous section for every prediction pre‐
sented to it. Explainability methods are computationally expensive, and a deployment
platform that can distribute and scale the computation can help you do your predic‐
tion analysis more efficiently.

In this section, we will demonstrate obtaining explanations using Integrated Gradi‐
ents and xRAI from a model deployed on Google Cloud’s Vertex AI.

At the time of writing, Azure ML supports SHAP, as does Amazon
SageMaker Clarify. Conceptually, the services are used similarly
even if the syntax is slightly different. Please consult the linked doc‐
umentation for specifics.

Explainability signatures
The explainability methods all need to invoke the model with perturbed versions of
the original image. Let’s say that our flowers model has the following export
signature:

Explainability | 343

https://arxiv.org/pdf/2002.08484.pdf
https://oreil.ly/wx2D0
https://oreil.ly/MSqhJ
https://oreil.ly/MSqhJ

@tf.function(input_signature=[tf.TensorSpec([None,], dtype=tf.string)])
def predict_filename(filenames):
 ...

It accepts a filename and returns the predictions for the image data in that file.

In order to provide the Explainable AI (XAI) module the ability to create perturbed
versions of the original images and obtain predictions for them, we will need to add
two signatures:

• A preprocessing signature, to obtain the image that is input to the model. This
method will take one or more filenames as input (like the original exported sig‐
nature) and produce a 4D tensor of the shape required by the model (the full
code is in 09f_explain.ipynb on GitHub):

@tf.function(input_signature=[
 tf.TensorSpec([None,], dtype=tf.string)])
def xai_preprocess(filenames):
 input_images = tf.map_fn(
 preprocess, # preprocessing function from Ch 6
 filenames,
 fn_output_signature=tf.float32
)
 return {
 'input_images': input_images
 }

Note that the return value is a dictionary. The key values of the dictionary
(input_images, here) have to match the parameter names in the second signa‐
ture that is described next so that the two methods can be called one after the
other in a third model signature that we will discuss shortly.

• A model signature, to send in the 4D image tensor (XAI will send in perturbed
images) and obtain predictions:

@tf.function(input_signature=[
 tf.TensorSpec([None, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS],
 dtype=tf.float32)])
def xai_model(input_images):
 batch_pred = model(input_images) # same as model.predict()
 top_prob = tf.math.reduce_max(batch_pred, axis=[1])
 pred_label_index = tf.math.argmax(batch_pred, axis=1)
 pred_label = tf.gather(tf.convert_to_tensor(CLASS_NAMES),
 pred_label_index)
 return {
 'probability': top_prob,
 'flower_type_int': pred_label_index,
 'flower_type_str': pred_label
 }

344 | Chapter 10: Trends in Production ML

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/09_deploying/09f_explain.ipynb

This code invokes the model and then pulls out the highest-scoring label and its
probability.

Given the preprocessing and model signatures, the original signature (that most cli‐
ents will use) can be refactored into:

@tf.function(input_signature=[tf.TensorSpec([None,], dtype=tf.string)])
def predict_filename(filenames):
 preproc_output = xai_preprocess(filenames)
 return xai_model(preproc_output['input_images'])

Now, we save the model with all three export signatures:

model.save(MODEL_LOCATION,
 signatures={
 'serving_default': predict_filename,
 'xai_preprocess': xai_preprocess, # input to image
 'xai_model': xai_model # image to output
 })

At this point, the model has the signatures it needs to apply XAI, but there is some
additional metadata needed in order to compute explanations.

Explanation metadata
Along with the model, we need to supply XAI a baseline image and some other meta‐
data. This takes the form of a JSON file that we can create programmatically using the
Explainability SDK open-sourced by Google Cloud.

We start by specifying which exported signature is the one that takes a perturbed
image as input, and which of the output keys (probability, flower_type_int, or
flower_type_str) needs to be explained:

from explainable_ai_sdk.metadata.tf.v2 import SavedModelMetadataBuilder
builder = SavedModelMetadataBuilder(
 MODEL_LOCATION,
 signature_name='xai_model',
 outputs_to_explain=['probability'])

Then we create the baseline image that will be used as the starting point for gradients.
Common choices here are all zeros (np.zeros), all ones (np.ones), or random noise.
Let’s do the third option:

random_baseline = np.random.rand(IMG_HEIGHT, IMG_WIDTH, 3)
builder.set_image_metadata(
 'input_images',
 input_baselines=[random_baseline.tolist()])

Note that we specified the name of the input parameter to the xai_model() function,
input_images.

Finally, we save the metadata file:

Explainability | 345

builder.save_metadata(MODEL_LOCATION)

This creates a file named explanation_metadata.json that lives along with the Saved‐
Model files.

Deploying the model
The SavedModel and associated explanation metadata are deployed to Vertex AI as
before, but with a couple of extra parameters to do with explainability. To deploy a
model version that provides IG explanations, we’d do:

gcloud beta ai-platform versions create \
 --origin=$MODEL_LOCATION --model=flowers ig ... \
 --explanation-method integrated-gradients --num-integral-steps 25

whereas to get xRAI explanations we’d do:

gcloud beta ai-platform versions create \
 --origin=$MODEL_LOCATION --model=flowers xrai ... \
 --explanation-method xrai --num-integral-steps 25

The --num-integral-steps argument specifies the number of steps between the
baseline image and input image for the purposes of numerical integration. The more
steps there are, the more accurate (and computationally intensive) the gradient com‐
putation is. A value of 25 is typical.

The explanation response contains an approximation error for
each prediction. Check the approximation error for a representa‐
tive set of inputs, and if this error is too high, increase the number
of steps.

For this example, let’s employ both image explainability methods—we’ll deploy a ver‐
sion that provides IG explanations with the name ig and a version that provides
xRAI explanations with the name xrai.

Either deployed version can be invoked as normal with a request whose payload looks
like this:

{
 "instances": [
 {
 "filenames": "gs://.../9818247_e2eac18894.jpg"
 },
 {
 "filenames": "gs://.../9853885425_4a82356f1d_m.jpg"
 },
 ...
]
}

346 | Chapter 10: Trends in Production ML

It returns the label and associated probability for each of the input images:

FLOWER_TYPE_INT FLOWER_TYPE_STR PROBABILITY
1 dandelion 0.398337
1 dandelion 0.999961
0 daisy 0.994719
4 tulips 0.959007
4 tulips 0.941772

The XAI versions can be used for normal serving with no performance impact.

Obtaining explanations

There are three ways to get the explanations. The first is through gcloud and the sec‐
ond through the Explainable AI SDK. Both of these end up invoking the third way—a
REST API—which we can use directly as well.

We’ll look at the gcloud method, as it is the simplest and most flexible. We can send
in a JSON request and obtain a JSON response using:

gcloud beta ai-platform explain --region=$REGION \
 --model=flowers --version=ig \
 --json-request=request.json > response.json

To get explanations using IG, we’ll deploy this version (ig) with the option:

--explanation-method integrated-gradients

The JSON response contains the attribution image in base64-encoded form. We can
decode it using:

with open('response.json') as ifp:
 explanations = json.load(ifp)['explanations']
 for expln in explanations:
 b64bytes = (expln['attributions_by_label'][0]
 ['attributions']['input_images']['b64_jpeg'])
 img_bytes = base64.b64decode(b64bytes)
 img = tf.image.decode_jpeg(img_bytes, channels=3)
 attribution = tf.image.convert_image_dtype(img, tf.float32)

The IG results for five images are shown in Figure 10-9. The 10b_explain.ipynb note‐
book on GitHub has the necessary plotting code.

Explainability | 347

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/10_mlops/10b_explain.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/10_mlops/10b_explain.ipynb

Figure 10-9. Integrated Gradients explanation of the flowers model. The input images
are in the top row, and the attributions returned by the XAI routine are in the second
row.

For the first image, it appears that the model uses the tall white flower, as well as parts
of the white pixels in the background, to decide that the image is a daisy. In the sec‐
ond image, the yellow-ish center and white petals are what the model relies on. Wor‐
ryingly, in the fourth image, the cat seems to be an important part of the
determination. Interestingly, the tulips’ determination seems to be driven more by the
green stalks than the bulb-like flowers. Again, as we will see shortly, this attribution is
misleading, and this misleading attribution demonstrates the limitations of the IG
approach.

To get xRAI explanations, we invoke gcloud explain on the model endpoint for the
version we deployed with the name xrai. The attributions from xRAI for the same
flower images are shown in Figure 10-10.

348 | Chapter 10: Trends in Production ML

Figure 10-10. xRAI explanation of the flowers model. The input images are in the top
row, and the attributions returned by the XAI routine are in the second row. The bottom
row contains the same information as the second row, except that the attribution images
have been recolored for easier visualization on the pages of this book.

Recall that xRAI uses the IG approach to identify salient regions, and then invokes
the model with perturbed versions of the images to determine how important each of
the regions is. It is clear that the attributions from xRAI in Figure 10-10 are much
more precise than those obtained with IG in Figure 10-9.

For the first flower image, the model focuses on the tall white flower and only that
flower. It is clear that the model has learned to ignore the smaller flowers in the back‐
ground. And while IG seemed to indicate that the background was important, the
xRAI results show that the model discards that information in favor of the most
prominent flower in the image. In the second image, the yellow-ish center and white
petals are what the model keys off of (IG got this right too). The precision of the xRAI
approach is clear for the third image—the model picks up on the narrow band of
bright yellow where the petals join the center. That is unique to daisies, and helps it
distinguish them from similarly colored dandelions. In the fourth image, we can see
that the tulip bulbs are what the model uses for its classification, although the cat con‐
fuses its attention. The final classification as tulips seems to be driven by the presence
of so many flowers. The IG method led us astray—the stalks are prominent, but it is
the bulbs that drive the prediction probability.

Explainability | 349

IG is useful in certain situations. Had we considered radiology images where pixel‐
wise attributions (rather than regions) are important, IG would have performed bet‐
ter. However, in images that depict objects, xRAI tends to perform better.

In this section, we have looked at how to add explainability to our prediction services
in order to meet the need of decision makers to understand what a machine learning
model is relying on. Next, let’s look at how no-code tools help democratize ML.

No-Code Computer Vision
The computer vision problems that we have considered so far in this book—image
classification, object detection, and image segmentation—are supported out of the
box by low-code and no-code machine learning systems. For example, Figure 10-11
shows the starting console for Google Cloud AutoML Vision.

Figure 10-11. Fundamental computer vision problems supported by Google Cloud
AutoML Vision, a machine learning tool that you can use without having to write any
code.

Other no-code and low-code tools that work on images include Create ML by Apple,
DataRobot, and H2O.

Why Use No-Code?
In this book, we have focused on implementing machine learning models using code.
However, it is worth incorporating a no-code tool into your overall workflow.

No-code tools are useful when embarking on a computer vision project for several
reasons, including:

350 | Chapter 10: Trends in Production ML

https://oreil.ly/Ft1We
https://oreil.ly/7xXOw
https://oreil.ly/DHKiK

Problem viability
Tools such as AutoML serve as a sanity check on the kind of accuracy that you
can expect. If the accuracy that is achieved is far from what would be acceptable
in context, this allows you to avoid wasting your time on futile ML projects. For
example, if identifying a counterfeit ID achieves only 98% precision at the desired
recall, you know that you have a problem—wrongly rejecting 2% of your custom‐
ers might be an unacceptable outcome.

Data quality and quantity
No-code tools provide a check on the quality of your dataset. After data collec‐
tion, the correct next step in many ML projects is to go out and collect more/
better data, not to train an ML model; and the accuracy that you get from a tool
like AutoML can help you make that decision. For example, if the confusion
matrix the tool produces indicates that the model frequently classifies all flowers
in water as lilies, that might be an indication that you need more photographs of
water scenes.

Benchmarking
Starting out with a tool like AutoML gives you a benchmark against which you
can compare the models that you build.

Many machine learning organizations arm their domain experts with no-code tools
so that they can examine problem viability and help collect high-quality data before
bringing the problem to the data science team.

In the rest of this section, we’ll quickly run through how to use AutoML on the 5-
flowers dataset, starting with loading data.

Loading Data
The first step is to load the data into the system. We do that by pointing the tool at the
all_data.csv file in the Cloud Storage bucket (see Figure 10-12).

Once the data is loaded, we see that there are 3,667 images with 633 daisies, 898 dan‐
delions, and so on (see Figure 10-13). We can verify that all the images are labeled,
and correct the labels if necessary. If we had loaded a dataset without labels, we could
label the images ourselves in the user interface or farm the task out to a labeling ser‐
vice (labeling services were covered in Chapter 5).

No-Code Computer Vision | 351

Figure 10-12. Creating a dataset by importing the files from Cloud Storage.

Figure 10-13. After loading the dataset, we can view the images and their labels. This is
also an opportunity to add or correct labels if necessary.

352 | Chapter 10: Trends in Production ML

Training
Once we are happy with the labels, we can click the Train New Model button to train
a new model. This leads us through the set of screens shown in Figure 10-14, where
we select the model type, the way to split the dataset, and our training budget. At the
time of writing, the 8-hour training budget we specified would have cost about $25.

Figure 10-14. User interface screens to launch the training job.

Note that in the last screen we enabled early stopping, so that AutoML can decide to
stop early if it doesn’t see any more improvement in validation metrics. With this
option the training finished in under 30 minutes (see Figure 10-15), meaning that the
entire ML training run cost us around $3. The result was 96.4% accuracy, comparable

No-Code Computer Vision | 353

to the accuracy we got with the most sophisticated models we created in Chapter 3
after a lot of tuning and experimentation.

Figure 10-15. AutoML finished training in well under an hour at a cost of less than $3,
and it achieved an accuracy of 96.4% on the 5-flowers dataset.

We should caution you that not all no-code systems are the same—
the Google Cloud AutoML system we used in this section performs
data preprocessing and augmentation, employs state-of-the-art
models, and carries out hyperparameter tuning to build a very
accurate model. Other no-code systems might not be as sophistica‐
ted: some train only one model (e.g., ResNet50), some train a single
model but do hyperparameter tuning, and some others search
among a family of models (ResNet18, ResNet50, and EfficientNet).
Check the documentation so that you know what you are getting.

Evaluation
The evaluation results indicate that the most misclassifications were roses wrongly
identified as tulips. If we were to continue our experimentation, we would examine
some of the mistakes (see Figure 10-16) and attempt to gather more images to mini‐
mize the false positives and negatives.

354 | Chapter 10: Trends in Production ML

https://oreil.ly/GvLwR

Figure 10-16. Examine the false positives and negatives to determine which kinds of
examples to collect more of. This can also be an opportunity to remove unrepresentative
images from the dataset.

Once we are satisfied with the model’s performance, we can deploy it to an endpoint,
thus creating a web service through which clients can ask the model to make predic‐
tions. We can then send sample requests to the model and obtain predictions from it.

For basic computer vision problems, the ease of use, low cost, and high accuracy of
no-code systems are extremely compelling. We recommend that you incorporate
these tools as a first step in your computer vision projects.

No-Code Computer Vision | 355

Summary
In this chapter, we looked at how to operationalize the entire ML process. We used
Kubeflow Pipelines for this purpose and took a whirlwind tour of the SDK, creating
Docker containers and Kubernetes components and stringing them into a pipeline
using data dependencies.

We explored several techniques that allow us to understand what signals the model is
relying on when it makes a prediction. We also looked at what no-code computer
vision frameworks are capable of, using Google Cloud’s AutoML to illustrate the typi‐
cal steps.

No-code tools are used by domain experts to validate problem viability, while
machine learning pipelines are used by ML engineers in deployment, and explainabil‐
ity is used to foster adoption of machine learning models by decision makers. As
such, these usually form the bookends of many computer vision projects and are the
points at which data scientists interface with other teams.

This concludes the main part of this book, where we have built and deployed an
image classification model from end to end. In the remainder of the book, we will
focus on advanced architectures and use cases.

356 | Chapter 10: Trends in Production ML

CHAPTER 11

Advanced Vision Problems

So far in this book, we have looked primarily at the problem of classifying an entire
image. In Chapter 2 we touched on image regression, and in Chapter 4 we discussed
object detection and image segmentation. In this chapter, we will look at more
advanced problems that can be solved using computer vision: measurement, count‐
ing, pose estimation, and image search.

The code for this chapter is in the 11_adv_problems folder of the
book’s GitHub repository. We will provide file names for code sam‐
ples and notebooks where applicable.

Object Measurement
Sometimes we want to know the measurements of an object within an image (e.g.,
that a sofa is 180 cm long). While we can simply use pixel-wise regression to measure
something like ground precipitation using aerial images of cloud cover, we will need
to do something more sophisticated for the object measurement scenario. We can’t
simply count the number of pixels and infer a size from that, because the same object
could be represented by a different number of pixels due to where it is within the
image, its rotation, aspect ratio, etc. Let’s walk through the four steps needed to meas‐
ure an object from a photograph of it, following an approach suggested by Imaginea
Labs.

357

https://github.com/GoogleCloudPlatform/practical-ml-vision-book
https://oreil.ly/FEaPn
https://oreil.ly/FEaPn

Reference Object
Suppose we’re an online shoe store, and we want to help customers find the best shoe
size by using photographs of their footprints. We ask customers to get their feet wet
and step onto a paper material, then upload a photo of their footprint like the one
shown in Figure 11-1. We can then obtain the appropriate shoe size (based on length
and width) and arch type from the footprint using an ML model.

Figure 11-1. Left: Photograph of wet footprint on paper. Right: Photograph of the same
footprint taken with the camera a few inches closer to the paper. Identifying the high-
pressure areas is helpful to identify the type of arch the person has. Photographs in this
section are by the author.

The ML model should be trained using different paper types, different lighting, rota‐
tions, flips, etc. to anticipate all of the possible variations of footprint images the
model might receive at inference time to predict foot measurements. But an image of
the footprint alone is insufficient to create an effective measurement solution, because
(as you can see in Figure 11-1) the size of foot in the image will vary depending on
factors such as the distance between the camera and the paper.

358 | Chapter 11: Advanced Vision Problems

A simple way to address the scale problem is to include a reference object that virtu‐
ally all customers should have. Most customers have credit cards, which have stan‐
dard dimensions, so this can be used as a reference or calibration object to help the
model determine the relative size of the foot in the image. As shown in Figure 11-2,
we simply ask each customer to place a credit card next to their footprint before tak‐
ing the photo. Having a reference object simplifies the measurement task to one of
comparing the foot against that object.

Figure 11-2. Left: Photograph of a credit card next to a wet footprint. Right: Photograph
of the same objects, taken with the camera a few inches closer to the paper.

Building our training dataset of different footprints on various backgrounds of course
may require some cleaning, such as rotating the images to have all footprints oriented
the same way. Otherwise, for some images we would be measuring the projected
length and not the true length. As for the reference credit card, we won’t perform any
corrections before training and will align the generated foot and reference masks at
prediction time.

At the beginning of the training we can perform data augmentation, such as rotating,
blurring, and changing the brightness, scaling, and contrast, as shown in Figure 11-3.
This can help us increase the size of our training dataset as well as teaching the model
to be flexible enough to receive many different real-world variations of the data.

Object Measurement | 359

Figure 11-3. Footprint image data augmentation performed at the beginning of training.

Segmentation
The machine learning model first needs to segment out the footprint from the credit
card in the image and identify those as the two correct objects extracted. For this we
will be using the Mask R-CNN image segmentation model, as discussed in Chapter 4
and depicted in Figure 11-4.

Figure 11-4. The Mask R-CNN architecture. Image adapted from He et al., 2017.

360 | Chapter 11: Advanced Vision Problems

https://arxiv.org/abs/1703.06870

Through the mask branch of the architecture we will predict a mask for the footprint
and a mask for the credit card, obtaining a result similar to that on the right in
Figure 11-4.

Remember our mask branch’s output has two channels: one for each object, footprint
and credit card. Therefore, we can look at each mask individually, as shown in
Figure 11-5.

Figure 11-5. Individual masks of footprint and credit card.

Next, we have to align the masks so that we can obtain the correct measurements.

Rotation Correction
Once we have obtained the masks of the footprint and the credit card, they have to be
normalized with respect to rotation, for users who may have placed the credit card in
slightly different orientations when taking the photograph.

To correct for the rotation, we can use principal component analysis (PCA) on each
of the masks to get the eigenvectors—the size of the object in the direction of the larg‐
est eigenvector, for example, is the length of the object (see Figure 11-6). The eigen‐
vectors obtained from PCA are orthogonal to each other and each subsequent
component’s eigenvector has a smaller and smaller contribution to the variance.

Object Measurement | 361

Figure 11-6. The credit card may have been placed in slightly different orientations with
respect to the foot. The directions of the two largest eigenvectors in each object are
marked by the axes.

Before PCA, the mask dimensions were in a vector space that had dimension axes
with respect to the original image, as shown on the left side of Figure 11-6. Using the
fact that the eigenvectors are in a different vector space basis after PCA, with the axes
now along the direction of greatest variance (as shown on the right in Figure 11-6),
we can use the angle between the original coordinate axis and the first eigenvector to
determine how much of a rotation correction to make.

Ratio and Measurements
With our rotation-corrected masks, we can now calculate the footprint measure‐
ments. We first project our masks onto a two-dimensional space and look along the
x- and y-axes. The length is found by measuring the pixel distance between the small‐
est and largest y-coordinate values, and likewise for the width in the x-dimension.
Remember, the measurements for both the footprint and the credit card are in units
of pixels, not centimeters or inches.

Next, knowing the precise measurements of the credit card, we can find the ratio
between the pixel dimensions and the real dimensions of the card. This ratio can then
be applied to the pixel dimensions of the footprint to ascertain its true measurements.

Determining the arch type is slightly more complicated, but it still requires counting
in pixels after finding high-pressure areas (see Su et al., 2015, and Figure 11-1). With

362 | Chapter 11: Advanced Vision Problems

https://oreil.ly/AlUIu

the correct measurements, as shown in Figure 11-7, our store will be able to find the
perfect shoe to fit each customer.

Figure 11-7. We can obtain the final measurements of the PCA-corrected masks using
the reference pixel/centimeter ratio.

Counting
Counting the number of objects in an image is a problem with widespread applica‐
tions, from estimating crowd sizes to identifying the potential yield of a crop from
drone imagery. How many berries are in the photograph shown in Figure 11-8?

Figure 11-8. Berries on a plant. Photograph by the author.

Counting | 363

1 Lempitsky and Zisserman introduced a custom loss function that they call the MESA distance, but the techni‐
que works well with good old mean squared error, so that’s what we show.

Based on the techniques we have covered so far, you might choose one of the follow‐
ing approaches:

1. Train an object detection classifier to detect berries, and count the number of
bounding boxes. However, the berries tend to overlap one another, and detection
approaches might miss or combine berries.

2. Treat this as a segmentation problem. Find segments that contain berries and
then, based on the properties of each cluster (for example, its size), determine the
number of berries in each. The problem with this method is that it is not scale-
invariant, and will fail if our berries are smaller or larger than typical. Unlike the
foot-size measurement scenario discussed in the previous section, a reference
object is difficult to incorporate into this problem.

3. Treat this as a regression problem, and estimate the number of berries from the
entire image itself. This method has the same scale problems as the segmentation
approach and it is difficult to find enough labeled images, although it has been
successfully employed in the past for counting crowds and wildlife.

There are additional drawbacks to these approaches. For example, the first two meth‐
ods require us to correctly classify berries, and the regression method ignores loca‐
tion, which we know is a significant source of information about the contents of
images.

A better approach is to use density estimation on simulated images. In this section,
we will discuss the technique and step through the method.

Density Estimation
For counting in situations like this where the objects are small and overlapping, there
is an alternative approach, introduced in a 2010 paper by Victor Lempitsky and
Andrew Zisserman, that avoids having to do object detection or segmentation and
does not lose the location information. The idea is to teach the network to estimate
the density of objects (here, berries) in patches of the image.1

In order to do density estimation, we need to have labels that indicate density. So, we
take the original image and break it into smaller nonoverlapping patches, and we
label each patch by the number of berry centers that lie in it, as shown in Figure 11-9.
It is this value that the network will learn to estimate. In order to make sure that the
total number of berries in the patches equals the number of berries in the image, we
make sure to count a berry as being in a patch only if its center point is in the patch.
Because some berries may be only partially in a patch, the grid input to the model has

364 | Chapter 11: Advanced Vision Problems

https://arxiv.org/abs/1703.09393
https://oreil.ly/1qdvm
https://oreil.ly/EW2J4

to be larger than a patch. The input is shown by the dashed lines. Obviously, this
makes the border of the image problematic, but we can simply pad the images as
shown on the right in Figure 11-9 to deal with this.

Figure 11-9. The model is trained on patches of the original image: the inputs and labels
for three such patches are shown in the left panel. The labels consist of the number of
berries whose center points lie within the inner square of each patch. The input patches
require “same” padding on all sides whereas the label patches consist of valid pixels only.

This method is applicable beyond just counting berries, of course—it tends to work
better than the alternatives at estimating crowd sizes, counting cells in biological
images, and other such applications where there are lots of objects and some objects
may be partially occluded by others. This is just like image regression, except that by
using patches we increase the dataset size and teach the model to focus on density.

Extracting Patches
Given an image of berries and a label image consisting of 1s corresponding to the
center point of each berry, the easiest way to generate the necessary input and label
patches is to employ the TensorFlow function tf.image.extract_patches(). This
function requires us to pass in a batch of images. If we have only one image, then we
can expand the dimension by adding a batch size of 1 using tf.expand_dims(). The
label image will have only one channel since it is Boolean, so we’ll also have to add a
depth dimension of 1 (the full code is in 11a_counting.ipynb on GitHub):

def get_patches(img, label, verbose=False):
 img = tf.expand_dims(img, axis=0)
 label = tf.expand_dims(tf.expand_dims(label, axis=0), axis=-1)

Counting | 365

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/11_adv_problems/11a_counting.ipynb

Now we can call tf.image.extract_patches() on the input image. Notice in the fol‐
lowing code that we ask for patches of the size of the dashed box (INPUT_WIDTH) but
stride by the size of the smaller label patch (PATCH_WIDTH). If the dashed boxes are
64x64 pixels, then each of the boxes will have 64 * 64 * 3 pixel values. These values
will be 4D, but we can reshape the patch values to a flattened array for convenience:

num_patches = (FULL_IMG_HEIGHT // PATCH_HEIGHT)**2
patches = tf.image.extract_patches(img,
 =[1, INPUT_WIDTH, INPUT_HEIGHT, 1],
 =[1, PATCH_WIDTH, PATCH_HEIGHT, 1],
 =[1, 1, 1, 1],
 ='SAME',
 ='get_patches')
patches = tf.reshape(patches, [num_patches, -1])

Next, we repeat the same operation on the label image:

labels = tf.image.extract_patches(label,
 =[1, PATCH_WIDTH, PATCH_HEIGHT, 1],
 =[1, PATCH_WIDTH, PATCH_HEIGHT, 1],
 =[1, 1, 1, 1],
 ='VALID',
 ='get_labels')
labels = tf.reshape(labels, [num_patches, -1])

There are two key differences in the code for the label patches versus that for the
image patches. First, the size of the label patches is the size of the inner box only. Note
also the difference in the padding specification. For the input image, we specify pad
ding=SAME, asking TensorFlow to pad the input image with zeros and then extract all
patches of the larger box size from it (see Figure 11-9). For the label image we ask
only for fully valid boxes, so the image will not be padded. This ensures that we get
the corresponding outer box of the image for every valid label patch.

The label image will now have 1s corresponding to the centers of all the objects we
want to count. We can find the total number of such objects, which we will call the
density, by summing up the pixel values of the label patch:

 # the "density" is the number of points in the label patch
 patch_labels = tf.math.reduce_sum(labels, axis=[1], name='calc_density')

Simulating Input Images
In their 2017 paper on yield estimation, Maryam Rahnemoor and Clay Sheppard
showed that it is not even necessary to have real labeled photographs to train a neural
network to count. To train their neural network to count tomatoes on a vine, the
authors simply fed it simulated images consisting of red circles on a brown and green
background. Because the method requires only simulated data, it is possible to
quickly create a large dataset. The resulting trained neural network performed well
on actual tomato plants. It is this approach, called deep simulated learning, that we

366 | Chapter 11: Advanced Vision Problems

https://oreil.ly/CTRLA

show next. Of course, if you actually have labeled data where each berry (or person in
a crowd, or antibody in a sample) is marked, you can use that instead.

We will generate a blurred green background, simulate 25–75 “berries,” and add them
to the image (see Figure 11-10).

Figure 11-10. Simulating input images for counting “berries” on a green background.
The first image is the background, the second the simulated berries, and the third the
actual input image.

The key pieces of code are to randomly position a few berries:

num_berries = np.random.randint(25, 75)
berry_cx = np.random.randint(0, FULL_IMG_WIDTH, size=num_berries)
berry_cy = np.random.randint(0, FULL_IMG_HEIGHT, size=num_berries)
label = np.zeros([FULL_IMG_WIDTH, FULL_IMG_HEIGHT])
label[berry_cx, berry_cy] = 1

At each berry location in the label image, a red circle is drawn:

berries = np.zeros([FULL_IMG_WIDTH, FULL_IMG_HEIGHT])
for idx in range(len(berry_cx)):
 rr, cc = draw.circle(berry_cx[idx], berry_cy[idx],
 radius=10,
 shape=berries.shape)
 berries[rr, cc] = 1

The berries are then added to the green background:

img = np.copy(backgr)
img[berries > 0] = [1, 0, 0] # red

Once we have an image, we can generate image patches from it and obtain the density
by adding up the berry centers that fall within the label patch. A few example patches
and the corresponding densities are shown in Figure 11-11.

Counting | 367

Figure 11-11. A few of the patches and the corresponding densities. Note that the label
patch consists only of the center 50% of the input patch, and only red circles whose cen‐
ters are in the label patch are counted in the density calculation.

Regression
Once we have the patch creation going, we can train a regression model on the
patches to predict the density. First, we set up our training and evaluation datasets by
generating simulated images:

def create_dataset(num_full_images):
 def generate_patches():
 for i in range(num_full_images):
 img, label = generate_image()
 patches, patch_labels = get_patches(img, label)
 for patch, patch_label in zip(patches, patch_labels):
 yield patch, patch_label

 return tf.data.Dataset.from_generator(
 generate_patches,
 (tf.float32, tf.float32), # patch, patch_label
 (tf.TensorShape([INPUT_HEIGHT*INPUT_WIDTH*IMG_CHANNELS]),
 tf.TensorShape([]))
)

We can use any of the models we discussed in Chapter 3. For illustration purposes,
let’s use a simple ConvNet (the full code is available in 11a_counting.ipynb on Git‐
Hub):

368 | Chapter 11: Advanced Vision Problems

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/11_adv_problems/11a_counting.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/11_adv_problems/11a_counting.ipynb

Model: "sequential"

Layer (type) Output Shape Param #
===
reshape (Reshape) (None, 64, 64, 3) 0

conv2d (Conv2D) (None, 62, 62, 32) 896

max_pooling2d (MaxPooling2D) (None, 31, 31, 32) 0

conv2d_1 (Conv2D) (None, 29, 29, 64) 18496

max_pooling2d_1 (MaxPooling2 (None, 14, 14, 64) 0

conv2d_2 (Conv2D) (None, 12, 12, 64) 36928

flatten (Flatten) (None, 9216) 0

dense (Dense) (None, 64) 589888

dense_1 (Dense) (None, 1) 65
===
Total params: 646,273
Trainable params: 646,273
Non-trainable params: 0

The key aspects to note about the architecture shown here are:

• The output is a single numeric value (density).
• The output node is a linear layer (so that the density can take any numeric value).
• The loss is mean square error.

These aspects make the model a regression model capable of predicting the density.

Prediction
Remember that the model takes a patch and predicts the density of berries in the
patch. Given an input image, we have to break it into patches exactly as we did during
training and carry out model prediction on all the patches, then sum up the predicted
densities, as shown below:

def count_berries(model, img):
 num_patches = (FULL_IMG_HEIGHT // PATCH_HEIGHT)**2
 img = tf.expand_dims(img, axis=0)
 patches = tf.image.extract_patches(img,
 sizes=[1, INPUT_WIDTH, INPUT_HEIGHT, 1],
 strides=[1, PATCH_WIDTH, PATCH_HEIGHT, 1],
 rates=[1, 1, 1, 1],
 padding='SAME',
 name='get_patches')

Counting | 369

 patches = tf.reshape(patches, [num_patches, -1])
 densities = model.predict(patches)
 return tf.reduce_sum(densities)

Predictions on some independent images are shown in Figure 11-12. As you can see,
the predictions are within 10% of the actual numbers.

Figure 11-12. Predicted values from the model, compared with the actual number of
objects in each image.

When we tried this on the real berry image with which we started this section, how‐
ever, the estimate was considerably off. Addressing this might require simulating ber‐
ries of different sizes, not just placing equally sized berries at random positions.

Pose Estimation
There are a variety of situations where we may desire to identify key parts of an
object. A very common situation is to identify elbows, knees, face, and so on in order
to identify the pose of a person. Therefore, this problem is termed pose estimation or
pose detection. Pose detection can be useful to identify whether a subject is sitting,
standing, dancing, or lying down or to provide advice on posture in sports and medi‐
cal settings.

Given a photograph like the one in Figure 11-13, how can we identify the feet, knees,
elbows, and hands in the image?

370 | Chapter 11: Advanced Vision Problems

Figure 11-13. Identifying the relative position of key body parts is useful to provide
coaching on improving a player’s form. Photograph by the author.

In this section, we will discuss the technique and point you toward an already trained
implementation. It is rarely necessary to train a pose estimation model from scratch
—instead, you will use the output of an already trained pose estimation model to
determine what the subjects in the images are doing.

PersonLab
The state-of-the-art approach was suggested in a 2018 paper by George Papandreou
et al. They called it PersonLab, but the models that implement their approach now go
by the name PoseNet. Conceptually, PoseNet consists of the steps depicted in
Figure 11-14:

1. Use an object detection model to identify a heatmap of all the points of interest in
the skeleton. These typically include the knees, elbows, shoulders, eyes, nose, and
so on. For simplicity, we’ll refer to these as joints. The heatmap is the score that is
output from the classification head of the object detection model (i.e., before
thresholding).

2. Anchored at each detected joint, identify the most likely location of nearby joints.
The offset location of the elbow given a detected wrist is shown in the figure.

3. Use a voting mechanism to detect human poses based on the joints chosen based
on steps 1 and 2.

In reality, steps 1 and 2 are carried out simultaneously by means of an object detec‐
tion model (any of the models discussed in Chapter 4 may be used) that predicts a
joint, its location, and the offset to nearby joints.

Pose Estimation | 371

https://arxiv.org/pdf/1803.08225.pdf

Figure 11-14. Identifying the relative position of key joints is useful to identify human
poses. Image adapted from Papandreou et al., 2018.

We need steps 2 and 3 because it is not sufficient to simply run an object detection
model to detect the various joints—it is possible that the model will miss some joints
and identify spurious joints. That’s why the PoseNet model also predicts offsets to
nearby joints from the detected joints. For example, if the model detects a wrist, the
wrist detection comes with an offset prediction for the location of the elbow joint.
This helps in cases where, for some reason, the elbow was not detected. If the elbow
was detected, we might now have three candidate locations for that joint—the elbow
location from the heatmap and the elbow locations from the offset predictions of the
wrist and the shoulder. Given all these candidate locations, a weighted voting mecha‐
nism called the Hough transform is used to determine the final location of the joint.

The PoseNet Model
PoseNet implementations are available in TensorFlow for Android and for the web
browser. The TensorFlow JS implementation runs in a web browser and uses Mobile‐
Net or ResNet as the underlying architecture, but continues to refer to itself as Pose‐
Net. An alternate implementation is provided by OpenPose.

The TensorFlow JS PoseNet model was trained to identify 17 body parts that include
facial features (nose, leftEye, rightEye, leftEar, rightEar) and key limb joints (shoulder,
elbow, wrist, hip, knee, and ankle) on both the left and the right side.

372 | Chapter 11: Advanced Vision Problems

https://arxiv.org/pdf/1803.08225.pdf
https://oreil.ly/rGzZh
https://oreil.ly/X1RVj
https://oreil.ly/EHSMY

To try it out, you’ll need to run a local web server—11b_posenet.html in the GitHub
repository provides details. Load the posenet package and ask it to estimate a single
pose (as opposed to an image with multiple people in it):

posenet.load().then(function(net) {
 const pose = net.estimateSinglePose(imageElement, {
 flipHorizontal: false
 });
 return pose;
})

Note that we ask that the image not be flipped. However, if you are processing selfie
images, you might want to flip them horizontally to match the user experience of see‐
ing mirrored images.

We can display the returned value as a JSON element using:

document.getElementById('output_json').innerHTML =
 "<pre>" + JSON.stringify(pose, null, 2) + "</pre>";

The JSON has the key points identified, along with their positions in the image:

{
 "score": 0.5220872163772583,
 "part": "leftEar",
 "position": {
 "x": 342.9179292671411,
 "y": 91.27406275411522
 }
},

We can use these to directly annotate the image as shown in Figure 11-15.

Figure 11-15. An annotated image, with the annotations derived from the output of
PoseNet. Each of the light gray boxes contains a marker (e.g., rightWrist), and they have
been connected by the skeleton.

Pose Estimation | 373

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/11_adv_problems/11b_posenet.html
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/11_adv_problems/11b_posenet.html

The accuracy of PoseNet is determined by the accuracy of the underlying classifica‐
tion model (ResNet tends to be both larger and slower but more accurate than
MobileNet, for example) and by the size of the output strides—the larger the stride,
the larger the patches, so the precision of the output locations suffers.

These factors can be changed when PoseNet is loaded:

posenet.load({
 architecture: 'ResNet50',
 outputStride: 32, # default 257
 inputResolution: { width: 500, height: 900 },
 quantBytes: 2
});

A smaller output stride results in a more accurate model, at the expense of speed. The
input resolution specifies the size the image is resized and padded to before it is fed
into the PoseNet model. The larger the value, the more accurate it is, again at the cost
of speed.

The MobileNet architecture takes a parameter called multiplier that specifies the
depth multiplier for convolution operations. The larger the multiplier, the more accu‐
rate but slower the model is. The quantBytes parameter in ResNet specifies the num‐
ber of bytes used for weight quantization. Using a value of 4 leads to a higher
accuracy and larger models than using 1.

Identifying Multiple Poses
To estimate the poses of multiple people in a single image, we use the same technique
outlined in the previous section, with a few additional steps:

1. Use an image segmentation model to identify all the pixels that correspond to
persons in the image.

2. Using the combination of joints, identify the most likely location of a specific
body part, such as the nose.

3. Using the pixels from the segmentation mask found in step 1, and the likely con‐
nections identified in step 2, assign the person pixels to individual persons.

An example is shown in Figure 11-16. Again, any of the image segmentation models
discussed in Chapter 4 may be used here.

374 | Chapter 11: Advanced Vision Problems

Figure 11-16. Identifying the poses of multiple people in the image. Adapted from
Papandreou et al., 2018.

When running PoseNet, you can ask it to estimate multiple poses using:

net.estimateMultiplePoses(image, {
 flipHorizontal: false,
 maxDetections: 5,
 scoreThreshold: 0.5,
 nmsRadius: 20
});

The key parameters here are the maximum number of people in the image (maxDetec
tions), the confidence threshold for a person detection (scoreThreshold), and the
distance within which two detections should suppress each other (nmsRadius, in
pixels).

Next, let’s look at the problem of supporting image search.

Image Search
eBay uses image search to improve the shopping experience (e.g., find the eyeglasses
that a specific celebrity is wearing) and the listing experience (e.g., here are all the rel‐
evant technical specifications of this gadget you are trying to sell).

The crux of the problem in both cases is to find the image in the dataset that is most
similar to a newly uploaded image. To provide this capability, we can use embed‐
dings. The idea is that two images that are similar to each other will have embeddings
that are also close to each other. So, to search for a similar image, we can simply
search for a similar embedding.

Distributed Search
To enable searching for similar embeddings, we will have to create a search index of
embeddings of the images in our dataset. Suppose we store this embedding index in a
large-scale, distributed data warehouse such as Google BigQuery.

Image Search | 375

https://arxiv.org/pdf/1803.08225.pdf
https://oreil.ly/JVE2J

If we have embeddings of weather images in the data warehouse, then it becomes easy
to search for “similar” weather situations in the past to some scenario in the present.
Here’s a SQL query that would do it:

WITH ref1 AS (
 SELECT time AS ref1_time, ref1_value, ref1_offset
 FROM `ai-analytics-solutions.advdata.wxembed`,
 UNNEST(ref) AS ref1_value WITH OFFSET AS ref1_offset
 WHERE time = '2019-09-20 05:00:00 UTC'
)
SELECT
 time,
 SUM((ref1_value - ref[OFFSET(ref1_offset)])
 * (ref1_value - ref[OFFSET(ref1_offset)])) AS sqdist
FROM ref1, `ai-analytics-solutions.advdata.wxembed`
GROUP BY 1
ORDER By sqdist ASC
LIMIT 5

We are computing the Euclidean distance between the embedding at the specified
timestamp (refl1) and every other embedding, and displaying the closest matches.
The result, shown here:

<0xa0> time sqdist
0 2019-09-20 05:00:00+00:00 0.000000
1 2019-09-20 06:00:00+00:00 0.519979
2 2019-09-20 04:00:00+00:00 0.546595
3 2019-09-20 07:00:00+00:00 1.001852
4 2019-09-20 03:00:00+00:00 1.387520

makes a lot of sense. The image from the previous/next hour is the most similar, then
images from +/– 2 hours, and so on.

Fast Search
In the SQL example in the previous section we searched the entire dataset, and we
were able to do it efficiently because BigQuery is a massively scaled cloud data ware‐
house. A drawback of data warehouses, however, is that they tend to have high
latency. We will not be able to get millisecond response times.

For real-time serving, we need to be smarter about how we search for similar embed‐
dings. Scalable Nearest Neighbors (ScaNN), which we use in our next example, does
search space pruning and provides an efficient way to find similar vectors.

Let’s build a search index of the first hundred images of our 5-flowers dataset (nor‐
mally, of course, we’d build a much larger dataset, but this is an illustration). We can
create MobileNet embeddings by creating a Keras model:

376 | Chapter 11: Advanced Vision Problems

https://oreil.ly/IxTn1
https://oreil.ly/1A1t4

layers = [
 hub.KerasLayer(
 "https://.../mobilenet_v2/...",
 input_shape=(IMG_WIDTH, IMG_HEIGHT, IMG_CHANNELS),
 trainable=False,
 name='mobilenet_embedding'),
 tf.keras.layers.Flatten()
]
model = tf.keras.Sequential(layers, name='flowers_embedding')

To create an embeddings dataset, we loop through the dataset of flower images and
invoke the model’s predict() function (the full code is in 11c_scann_search.ipynb on
GitHub):

def create_embeddings_dataset(csvfilename):
 ds = (tf.data.TextLineDataset(csvfilename).
 map(decode_csv).batch(BATCH_SIZE))
 dataset_filenames = []
 dataset_embeddings = []
 for filenames, images in ds:
 embeddings = model.predict(images)
 dataset_filenames.extend(
 [f.numpy().decode('utf-8') for f in filenames])
 dataset_embeddings.extend(embeddings)
 dataset_embeddings = tf.convert_to_tensor(dataset_embeddings)
 return dataset_filenames, dataset_embeddings

Once we have the training dataset, we can initialize the ScaNN searcher, specifying
that the distance function to use is the cosine distance (we could also use Euclidean
distance):

searcher = scann.scann_ops.builder(
 dataset_embeddings,
 NUM_NEIGH, "dot_product").score_ah(2).build()

This builds a tree for fast searching.

To search for the neighbors for some images, we obtain their embeddings and invoke
the searcher:

_, query_embeddings = create_embeddings_dataset(
 "gs://cloud-ml-data/img/flower_photos/eval_set.csv"
)
neighbors, distances = searcher.search_batched(query_embeddings)

If you have only one image, call searcher.search().

Some results are shown in Figure 11-17. We are looking for images similar to the first
image in each row; the three closest neighbors are shown in the other panels. The
results aren’t too impressive. What if we used a better approach to create embeddings,
rather than using the embeddings from MobileNet that are meant for transfer
learning?

Image Search | 377

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/11_adv_problems/11c_scann_search.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/11_adv_problems/11c_scann_search.ipynb
https://oreil.ly/zJm5f

Figure 11-17. Searching for images similar to the first image in each row.

Better Embeddings
In the previous section we used MobileNet embeddings, which are derived from an
intermediate bottleneck layer obtained by training a large image classification model.
It is possible to use more customized embeddings. For example, when searching for
face similarity, embeddings from a model trained to identify and verify faces will per‐
form better than a generic embedding.

To optimize the embeddings for the purposes of facial search, a system called FaceNet
uses triplets of matching/nonmatching face patches that are aligned based on facial
features. The triplets consist of two matching and one nonmatching face thumbnails.
A triplet loss function is used that aims to separate the positive pair from the negative
one by the maximum possible distance. The thumbnails themselves are tight crops of
the face area. The difficulty of the triplets shown to the network increases as the net‐
work trains.

Because of the ethical sensitivities that surround facial search and
verification, we are not demonstrating an implementation of facial
search in our repository or covering this topic any further. Code
that implements the FaceNet technique is readily available online.
Please make sure that you use AI responsibly and in a way that
doesn’t run afoul of governmental, industry, or company policies.

The triplet loss can be used to create embeddings that are clustered together by label
such that two images with the same label have their embeddings close together and
two images with different labels have their embeddings far apart.

378 | Chapter 11: Advanced Vision Problems

https://arxiv.org/abs/1503.03832
https://oreil.ly/rRZ9Q

The formal definition of triplet loss uses three images: the anchor image, another
image with the same label (so that the second image and the anchor form a positive
pair), and a third image with a different label (so that the third image and the anchor
form a negative pair). Given three images, the loss of a triplet (a, p, n) is defined such
that the distance d(a, p) is pushed toward zero and the distance d(a, n) is at least
some margin greater than d(a, p):

L − max d a, p − d a, n + margin, 0

Given this loss, there are three categories of negatives:

• Hard negatives, which are negatives that are closer to the anchor than the
positive

• Easy negatives, which are negatives that are very far away from the anchor
• Semi-hard negatives, which are further away than the positive, but within the

margin distance

In the FaceNet paper, Schroff et al. found that focusing on the semi-hard negatives
yielded embeddings where images with the same label clustered together and were
distinct from images with a different label.

We can improve the embeddings for our flower images by adding a linear layer and
then training the model to minimize the triplet loss on those images, focusing on the
semi-hard negatives:

layers = [
 hub.KerasLayer(
 "https://tfhub.dev/.../mobilenet_v2/feature_vector/4",
 input_shape=(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS),
 trainable=False,
 name='mobilenet_embedding'),
 tf.keras.layers.Dense(5, activation=None, name='dense_5'),
 tf.keras.layers.Lambda(lambda x: tf.math.l2_normalize(x, axis=1),
 name='normalize_embeddings')
]
model = tf.keras.Sequential(layers, name='flowers_embedding')
model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
 loss=tfa.losses.TripletSemiHardLoss())

In the preceding code, the architecture ensures that the resulting embedding is of
dimension 5 and that the embedding values are normalized.

Note that the definition of the loss means that we have to somehow ensure that each
batch contains at least one positive pair. Shuffling and using a large enough batch size
tends to work. In the 5-flowers example we used a batch size of 32, but it is a number

Image Search | 379

you have to experiment with. Assuming the k classes are equally distributed, the odds
of a batch of size B containing at least one positive pair is:

1 − k − 1B

k

For 5 classes and a batch size of 32, this works out to 99.9%. 0.1% is not zero, how‐
ever, so in the ingest pipeline we have to discard batches that don’t meet this criterion.

After training this model and plotting the embeddings on a test dataset (the full code
is in 11c_scann_search.ipynb on GitHub), we see that the resulting embeddings clus‐
ter with similar labels (see Figure 11-18).

Figure 11-18. On training the model with a triplet loss, we find that images with the
same labels cluster together in the embedding space.

This is also apparent in the results obtained when we search for similar images (see
Figure 11-19)—the distances are smaller, and the images look much more similar
than the ones in Figure 11-17.

380 | Chapter 11: Advanced Vision Problems

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/11_adv_problems/11c_scann_search.ipynb

Figure 11-19. On training the embedding with a triplet loss, the distances become
smaller, and the close-by images are truly similar. Compare with Figure 11-17.

Summary
In this chapter, we explored a variety of use cases that build on the fundamental com‐
puter vision techniques. Object measurement can be done using reference objects,
masks, and some image correction. Counting can be done through postprocessing of
object detections. However, in some situations, a density estimate is better. Pose esti‐
mation is done by predicting the likelihood of the different joints at coarse-grained
blocks within the image. Image search can be improved by training an embedding
with a triplet loss and using a fast search method such as ScaNN.

In the next chapter, we will explore how to generate images, not just process them.

Summary | 381

CHAPTER 12

Image and Text Generation

So far in this book, we have focused on computer vision methods that act on images.
In this chapter, we will look at vision methods that can generate images. Before we get
to image generation, though, we have to learn how to train a model to understand
what’s in an image so that it knows what to generate. We will also look at the problem
of generating text (captions) based on the content of an image.

The code for this chapter is in the 12_generation folder of the
book’s GitHub repository. We will provide file names for code sam‐
ples and notebooks where applicable.

Image Understanding
It’s one thing to know what components are in an image, but it’s quite another to
actually understand what is happening in the image and to use that information for
other tasks. In this section, we will quickly recap embeddings and then look at various
methods (autoencoders and variational autoencoders) to encode an image and learn
about its properties.

Embeddings
A common problem with deep learning use cases is lack of sufficient data, or data of
high enough quality. In Chapter 3 we discussed transfer learning, which provides a
way to extract embeddings that were learned from a model trained on a larger data‐
set, and apply that knowledge to train an effective model on a smaller dataset.

383

https://github.com/GoogleCloudPlatform/practical-ml-vision-book

With transfer learning, the embeddings we use were created by training the model on
the same task, such as image classification. For instance, suppose we have a ResNet50
model that was trained on the ImageNet dataset, as shown in Figure 12-1.

Figure 12-1. Training a ResNet model to classify images.

To extract the learned image embeddings, we would choose one of the model’s inter‐
mediate layers—usually the last hidden layer—as the numerical representation of the
input image (see Figure 12-2).

Figure 12-2. Feature extraction from trained ResNet model to obtain image embeddings.

There are two problems with this approach of creating embeddings by training a clas‐
sification model and using its penultimate layer:

• To create these embeddings, we need a large, labeled dataset of images. In this
example, we trained a ResNet50 on ImageNet to get the image embeddings.
However, these embeddings will work well only for the types of images found in
ImageNet—photographs found on the internet. If you have a different type of
image (such as diagrams of machine parts, scanned book pages, architectural
drawings, or satellite imagery), the embeddings learned from the ImageNet data‐
set may not work so well.

• The embeddings reflect the information that is relevant to determining the label
of the image. By definition, therefore, many of the details of the input images that

384 | Chapter 12: Image and Text Generation

are not relevant to this specific classification task may not be captured in the
embeddings.

What if you want an embedding that works well for images other than photographs,
you don’t have a large labeled dataset of such images, and you want to capture as
much of the information content in the image as possible?

Auxiliary Learning Tasks
Another way to create embeddings is to use an auxiliary learning task. An auxiliary
task is a task other than the actual supervised learning problem we are trying to solve.
This task should be one for which large amounts of data are readily available. For
example, in the case of text classification we can create the text embeddings using an
unrelated problem, such as predicting the next word of a sentence, for which there is
already copious and readily available training data. The weight values of some inter‐
mediate layer can then be extracted from the auxiliary model and used to represent
text for various other unrelated tasks. Figure 12-3 shows an example of this kind of
text or word embedding where a model is trained to predict the next word in a sen‐
tence. Using the words “the cat sat” as input, such a model would be trained to predict
the word “on.” The input words are first one-hot encoded, but the penultimate layer
of the prediction model, if it has four nodes, will learn to represent the input words as
a four-dimensional embedding.

Figure 12-3. Word embeddings created by training a model to predict the next word in a
sentence can be used for an unrelated task, such as text classification. The illustration
shows the word encoding before (left) and after (right) the auxiliary task.

Autoencoders take advantage of an auxiliary learning task for images, similar to the
predict-the-next-word model in the case of text. We’ll look at these next.

Autoencoders
A great auxiliary learning task to learn image embeddings is to use autoencoders.
With an autoencoder, we take the image data and pass it through a network that bot‐
tlenecks it into a smaller internal vector, and then expands it back out into the

Image Understanding | 385

dimensionality of the original image. When we train the autoencoder, the input
image itself functions as its own label. This way we are essentially learning lossy com‐
pression, or how to recover the original image despite squeezing the information
through a constrained network. The hope is that we are squeezing out the noise from
the data and learning an efficient map of the signal.

With embeddings that are trained through a supervised task, any information in the
inputs that isn’t useful or related to the label usually gets pruned out with the noise.
On the other hand, with autoencoders, since the “label” is the entire input image,
every part of the input is relevant to the output, and therefore hopefully much more
of the information is retained from the inputs. Because autoencoders are self-
supervised (we don’t need a separate step to label the images), we can train on much
more data and get a greatly improved encoding.

Typically, the encoder and decoder form an hourglass shape as each progressive layer
in the encoder shrinks in dimensionality and each progressive layer in the decoder
expands in dimensionality, as seen in Figure 12-4. With the shrinking dimensionality
in the encoder and the expanding dimensionality in the decoder, at some point the
dimensionality reaches a minimum size at the end of the encoder and the start of the
decoder, represented by the two-pixel, single-channel block in the middle of
Figure 12-4. This latent vector is a concise representation of the inputs, where the
data is being forced through a bottleneck.

Figure 12-4. An autoencoder takes an image as input and produces the reconstructed
image as output.

So, how big should the latent dimension be? As with other types of embeddings, there
is a trade-off between compression and expressivity. If the dimensionality of the

386 | Chapter 12: Image and Text Generation

latent space is too small, there won’t be enough expressive power to fully represent
the original data—some of the signal will be lost. When this representation is decom‐
pressed back to the original size, too much information will be missing to get the
desired outputs. Conversely, if the dimensionality of the latent space is too large, then
even though there will be ample space to store all of the desired information there
will also be space to encode some of the unwanted information (i.e., the noise). The
ideal size for the latent dimension is thus something to tune through experimenta‐
tion. Typical values are 128, 256, or 512, though of course this depends on the sizes of
the layers of the encoder and the decoder.

Next we’ll look at implementing an autoencoder, starting with its architecture.

Architecture
To simplify our discussion and analysis of the autoencoder architecture, we’ll pick a
simple dataset of handwritten digits called MNIST to apply the autoencoder to (the
full code is in 12a_autoencoder.ipynb on GitHub). The input images are of size 28x28
and consist of a single grayscale channel.

The encoder starts with these 28x28 inputs and then progressively squeezes the infor‐
mation into fewer and fewer dimensions by passing the inputs through convolutional
layers to end up at a latent dimension of size 2:

encoder = tf.keras.Sequential([
 keras.Input(shape=(28, 28, 1), name="image_input"),
 layers.Conv2D(32, 3, activation="relu", strides=2, padding="same"),
 layers.Conv2D(64, 3, activation="relu", strides=2, padding="same"),
 layers.Flatten(),
 layers.Dense(2) # latent dim
], name="encoder")

The decoder will have to reverse these steps using Conv2DTranspose layers (also
known as deconvolution layers, covered in Chapter 4) wherever the encoder has a
Conv2D (convolution) layer:

decoder = tf.keras.Sequential([
 keras.Input(shape=(latent_dim,), name="d_input"),
 layers.Dense(7 * 7 * 64, activation="relu"),
 layers.Reshape((7, 7, 64)),
 layers.Conv2DTranspose(32, 3, activation="relu",
 strides=2, padding="same"),
 layers.Conv2DTranspose(1, 3, activation="sigmoid",
 strides=2, padding="same")
], name="decoder")

Once we have the encoder and decoder blocks, we can tie them together to form a
model that can be trained.

Image Understanding | 387

https://oreil.ly/nia0l
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/12_generation/12a_autoencoder.ipynb

Reverse Operations for Common Keras Layers
When writing autoencoders, it is helpful to know the “reverse” operations for com‐
mon Keras layers. The reverse of a Dense layer that takes inputs of shape s1 and pro‐
duces outputs of shape s2:

Dense(s2)(x) # x has shape s1

is a Dense layer that takes s2s and produces s1s:

Dense(s1)(x) # x has shape s2

The reverse of a Flatten layer will be a Reshape layer with the input and output
shapes similarly swapped.

The reverse of a Conv2D layer is a Conv2DTranspose layer. Instead of taking a neigh‐
borhood of pixels and downsampling them into one pixel, it expands one pixel into a
neighborhood to upsample the image. Keras also has an Upsampling2D layer. Upsam‐
pling is a cheaper operation since it involves no trainable weights and just repeats the
source pixel values, or does bilinear interpolation. On the other hand, Conv2DTrans
pose deconvolves with a kernel, and thus weights, which are learned during model
training to get a superior upsampled image.

Training
The model to be trained consists of the encoder and decoder blocks chained together:

encoder_inputs = keras.Input(shape=(28, 28, 1))
x = encoder(encoder_inputs)
decoder_output = decoder(x)
autoencoder = keras.Model(encoder_inputs, decoder_output)

The model has to be trained to minimize the reconstruction error between the input
and output images—for example, we could compute the mean squared error between
the input and output images and use that as the loss function. This loss function can
be used in backpropagation to calculate the gradients and update the weights of the
encoder and decoder subnetworks:

autoencoder.compile(optimizer=keras.optimizers.Adam(), loss='mse')
history = autoencoder.fit(mnist_digits, mnist_digits,
 epochs=30, batch_size=128)

Latent vectors
Once the model is trained, we can drop the decoder and use the encoder to convert
images into latent vectors:

z = encoder.predict(img)

388 | Chapter 12: Image and Text Generation

If the autoencoder has successfully learned how to reconstruct the image, the latent
vectors for similar images will tend to cluster, as shown in Figure 12-5. Notice that
the 1s, 2s, and 0s occupy different parts of the latent vector space.

Figure 12-5. The encoder compresses input images into the latent representation. The
latent representations for specific digits cluster together. We are able to represent the
latent representations as points on a 2D graph because each latent representation is two
numbers (x, y).

Because the entire information content of the input image has to flow through the
bottleneck layer, the bottleneck layer after training will retain enough information for
the decoder to be able to reconstruct a close facsimile of the input image. Therefore,
we can train autoencoders for dimensionality reduction. The idea, as in Figure 12-5,
is to drop the decoder and use the encoder to convert images into latent vectors.
These latent vectors can then be used for downstream tasks such as classification and
clustering, and the results may be better than those achieved with classical dimen‐
sionality reduction techniques like principal component analysis. If the autoencoder
uses nonlinear activations, the encoding can capture nonlinear relationships between
the input features, unlike PCA, which is solely a linear method.

A different application might be to use the decoder to turn latent vectors provided
not by an encoded image but by a user into generated images, as shown in
Figure 12-6.

Image Understanding | 389

Figure 12-6. The decoder decompressing a latent representation back into an image.

While this works tolerably well for the very simple MNIST dataset, it doesn’t work in
practice on more complex images. Indeed, in Figure 12-7 we can see some of the
shortcomings even on the handwritten digits in MNIST—while the digits look realis‐
tic in some parts of the latent space, in other places they are unlike any digits that we
know. For example, look at the center left of the image, where 2s and 8s have been
interpolated into something nonexistent. The reconstructed images are completely
meaningless. Notice also that there is a preponderance of 0s and 2s, but not as many
1s as one would expect looking at the overlapping clusters in Figure 12-5. While it
will be relatively easy to generate 0s and 2s, it will be quite difficult to generate 1s—
we’d have to get the latent vector just right to get a 1 that doesn’t look like a 2 or a 5!

390 | Chapter 12: Image and Text Generation

Figure 12-7. Reconstructed images for the latent space between [–2,-3] and [3,3].

What could be the matter? There are vast regions of the latent space (note the white‐
space in Figure 12-5) that do not correspond to valid digits. The training task does
not care about the whitespace at all, but has no incentive for minimizing it. The
trained model does a great job when using both the encoder and decoder together,
which is the original task we asked the autoencoder to learn. We passed images into
the encoder subnetwork, which compressed the data down into vectors (the learned
latent representations of those images). We then decompressed those representations
with the decoder subnetwork to reconstruct the original images. The encoder has
learned a mapping from image to latent space using a highly nonlinear combination
of perhaps millions of parameter weights. If we naively try to create our own latent
vector, it won’t conform to the more nuanced latent space that the encoder has cre‐
ated. Therefore, without the encoder, our randomly chosen latent vector isn’t very
likely to result in a good encoding that the decoder can use to generate a quality
image.

Image Understanding | 391

We’ve seen now that we can use autoencoders to reconstruct images by using their
two subnetworks: the encoder and decoder. Furthermore, by dropping the decoder
and using only the encoder, we now can encode images nonlinearly into latent vec‐
tors that we can then use as embeddings in a different task. However, we’ve also seen
that naively trying the converse of dropping the encoder and using the decoder to
generate an image from a user-provided latent vector doesn’t work.

If we truly want to use the decoder of an autoencoder-type structure to generate
images, then we need to develop a way to organize or regularize the latent space. This
can be achieved by mapping points that are close in latent space to points that are
close in image space and filling the latent space map so that all points make some‐
thing sensical rather than creating small islands of reasonable outputs in an ocean of
unmapped noise. This way we can generate our own latent vectors, and the decoder
will be able to use those to make quality images. This forces us to leave classic autoen‐
coders behind and takes us to the next evolution: the variational autoencoder.

Variational Autoencoders
Without an appropriately organized latent space, there are usually two main prob‐
lems with using autoencoder-type architectures for image generation. First, if we
were to generate two points that are close in the latent space, we would expect the
outputs corresponding to those points to be similar to each other after they’ve been
passed through the decoder. For instance, as Figure 12-8 depicts, if we have trained
our autoencoder on geometric shapes such as circles, squares, and triangles, if we cre‐
ate two points that are close in the latent space we assume they should both be latent
representations of either circles, squares, triangles, or some interpolation in between.
However, since the latent space hasn’t been explicitly regularized, one of the latent
points might generate a triangle whereas the other latent point might generate a
circle.

Figure 12-8. Two close points in 3D latent space may be decoded into very different
images.

392 | Chapter 12: Image and Text Generation

Second, after training an autoencoder for a long time and observing good reconstruc‐
tions, we would expect that the encoder will have learned where each archetype of
our images (for instance, circles or squares in the shapes dataset) best fits within the
latent space, creating n-dimensional subdomains for each archetype that can overlap
with other subdomains. For example, there may be a region of the latent space where
the square-type images mostly reside, and another region of the latent space where
circle-like images have been organized. Furthermore, where they overlap, we’ll get
shapes that lie somewhere in between on some square–circle spectrum.

Yet, because the latent space is not explicitly organized in autoencoders, random
points in the latent space can return completely meaningless, unrecognizable images
after being passed through the decoder, as shown in Figure 12-9. Instead of the imag‐
ined vast overlapping spheres of influence, small isolated islands are formed.

Figure 12-9. A random point in the latent space decoded into a meaningless, nonsense
image.

Now, we can’t blame autoencoders too much. They are doing exactly what they were
designed to do, namely reconstructing their inputs with the goal of minimizing a
reconstruction loss function. If having small isolated islands achieves that, then that is
what they’ll learn to do.

Variational autoencoders (VAEs) were developed in response to classic autoencoders
being unable to use their decoders to generate quality images from user-generated
latent vectors.

VAEs are generative models that can be used when, instead of just wanting to dis‐
criminate between classes, such as in a classification task where we create a decision
boundary in a latent space (possibly satisfied with barely separating classes), we want
to create n-dimensional bubbles that encompass similar training examples. This dis‐
tinction is visualized in Figure 12-10.

Image Understanding | 393

Figure 12-10. Discriminative model conditional versus generative model joint probabil‐
ity distributions.

Discriminative models, including popular image ML models for tasks such as classifi‐
cation and object detection, learn a conditional probability distribution that models
the decision boundary between the classes. Generative models, on the other hand,
learn a joint probability distribution that explicitly models the distribution of each
class. The conditional probability distribution isn’t lost—we can still do classification
using Bayes’ theorem, for example.

Fortunately, most of the architecture of variational autoencoders is the same as that of
classic autoencoders: the hourglass shape, reconstruction loss, etc. However, the few
additional complexities allow VAEs to do what autoencoders can’t: image generation.

This is illustrated in Figure 12-11, which shows that both of our latent space regular‐
ity problems have been solved. The first problem of close latent points generating
very different decoded images has been fixed, and now we are able to create similar
images that smoothly interpolate through the latent space. The second problem of
points in the latent space generating meaningless, nonsense images has also been
fixed, and now we can generate plausible images. Remember, these images may not
actually be exactly like the images the model was trained on, but may be in between
some of the main archetypes because of the smooth overlapping regions within the
learned organized latent space.

394 | Chapter 12: Image and Text Generation

Figure 12-11. Both problems have been solved with an organized, regularized latent
space.

Rather than having just a latent vector in between the encoder and decoder networks,
which is essentially a point within the latent space, variational autoencoders train the
encoder to produce parameters of a probability distribution and make the decoder
randomly sample using them. The encoder no longer outputs a vector that describes
a point within the latent space, but the parameters of a probability distribution. We
can then sample from that distribution and pass those sampled points to our decoder
to decompress them back into images.

In practice, the probability distribution is a standard normal distribution. This is
because a mean close to zero will help prevent encoded distributions being too far
apart and appearing as isolated islands. Also, a covariance close to the identity helps
prevent the encoded distributions from being too narrow. The left side of
Figure 12-12 shows what we are trying to avoid, with small, isolated distributions sur‐
rounded by voids of meaningless nonsense.

Image Understanding | 395

Figure 12-12. What we’re trying to avoid (left) and what we’re trying to achieve (right).
We don’t want small, isolated island distributions surrounded by vast voids of nonsense;
we want the entire space covered by n-dimensional bubbles, as shown on the right. The
goal is to have smoothly overlapping distributions without large gaps.

The image on the right in Figure 12-12 shows smoothly overlapping distributions
without large gaps, which is exactly what we want for great image generation. Notice
the interpolation where two distributions intersect. There is in fact a smooth gradient
encoded over the latent space. For instance, we could start at the deep heart of the
triangle distribution and move directly toward the circle distribution. We would
begin with a perfect triangle, and with every step we took toward the circle distribu‐
tion our triangle would get rounder and rounder until we reached the deep heart of
the circle distribution, where we would now have a perfect circle.

To be able to sample from these distributions, we need both the mean vector and the
covariance matrix. Therefore, the encoder network will output a vector for the distri‐
bution’s mean and a vector for the distribution’s covariance. To simplify things, we
assume that these are independent. Therefore, the covariance matrix is diagonal, and
we can simply use that instead of having an n2-long vector of mostly zeros.

Now let’s look at how to implement a VAE, starting with its architecture.

Architecture
In TensorFlow, a VAE encoder has the same structure as in a classic autoencoder,
except instead of a single latent vector we now have a vector with two components,
mean and variance (the full code is in 12b_vae.ipynb on GitHub):

encoder_inputs = keras.Input(shape=(28, 28, 1))
x = layers.Conv2D(
 32, 3, activation="relu", strides=2, padding="same")(encoder_inputs)
x = layers.Conv2D(
 64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Flatten(name="e_flatten")(x)
z_mean = layers.Dense(latent_dim, name="z_mean")(x) # same as autoencoder

396 | Chapter 12: Image and Text Generation

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/12_generation/12b_vae.ipynb

However, in addition to the z_mean, we need two additional outputs from the
encoder. And because our model now has multiple outputs, we can no longer use the
Keras Sequential API; instead, we have to use the Functional API. The Keras Func‐
tional API is more like standard TensorFlow, where inputs are passed into a layer and
the layer’s outputs are passed to another layer as its inputs. Any arbitrarily complex
directed acyclic graph can be made using the Keras Functional API:

z_log_var = layers.Dense(latent_dim, name="z_log_var")(x)
z = Sampling()(z_mean, z_log_var)
encoder = keras.Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder")

The sampling layer needs to sample from a normal distribution parameterized by the
outputs of our encoder layers rather than using a vector from the final encoder layer
as in non-variational autoencoders. The code for the sampling layer in TensorFlow
looks like this:

class Sampling(tf.keras.layers.Layer):
 """Uses (z_mean, z_log_var) to sample z, the vector encoding a digit.
 """
 def call(self, inputs):
 z_mean, z_log_var = inputs
 batch = tf.shape(input=z_mean)[0]
 dim = tf.shape(input=z_mean)[1]
 epsilon = tf.random.normal(shape=(batch, dim))
 return z_mean + tf.math.exp(x=0.5 * z_log_var) * epsilon

The VAE decoder is identical to that in a non-variational autoencoder—it takes the
latent vector z produced by the encoder and decodes it into an image (specifically, the
reconstruction of the original image input):

z_mean, z_log_var, z = encoder(encoder_inputs) # 3 outputs now
decoder_output = decoder(z)
vae = keras.Model(encoder_inputs, decoder_output, name="vae")

Loss
A variational autoencoder’s loss function contains an image reconstruction term, but
we cannot just use the mean squared error (MSE). In addition to the reconstruction
error, the loss function also contains a regularization term called the Kullback–Leibler
divergence, which is essentially a penalty for the encoder’s normal distribution (para‐
meterized by mean μ and standard deviation σ) not being a perfect standard normal
distribution (with mean 0 and a standard deviation of identity):

L = x − x 2 + KL N μx, σx , N 0, I

We therefore modify the encoder loss function as follows:

def kl_divergence(z_mean, z_log_var):
 kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) -

Image Understanding | 397

 tf.exp(z_log_var))
 return tf.reduce_mean(tf.reduce_sum(kl_loss, axis=1))
encoder.add_loss(kl_divergence(z_mean, z_log_var))

The overall reconstruction loss is the sum of the per-pixel losses:

def reconstruction_loss(real, reconstruction):
 return tf.reduce_mean(
 tf.reduce_sum(
 keras.losses.binary_crossentropy(real, reconstruction),
 axis=(1, 2)
)
)
vae.compile(optimizer=keras.optimizers.Adam(),
 loss=reconstruction_loss, metrics=["mse"])

We then train the encoder/decoder combination with the MNIST images functioning
as both the input features and the labels:

history = vae.fit(mnist_digits, mnist_digits, epochs=30,
 batch_size=128)

Because the variational encoder has been trained to include the binary cross-entropy
in its loss function, it takes into account the separability of the different classes in the
images. The resulting latent vectors are more separable, occupy the entire latent
space, and are better suited to generation (see Figure 12-13).

Figure 12-13. Clusters (left) and generated images (right) from a VAE trained on
MNIST.

Variational autoencoders are able to create images that look just like their inputs. But
what if we want to generate entirely new images? We’ll look at image generation next.

398 | Chapter 12: Image and Text Generation

Image Generation
Image generation is an important and rapidly growing field that goes well beyond just
generating numbers and faces for fun; it has many important use cases for individuals
and businesses alike, such as image restoration, image translation, super-resolution,
and anomaly detection.

We saw previously how VAEs re-create their inputs; however, they aren’t particularly
successful at creating entirely new images that are similar to but different from the
images in the input dataset. This is especially true if the generated images need to be
perceptually real—for example, if, given a dataset of images of tools, we want a model
to generate new pictures of tools that have different characteristics than the tools in
the training images. In this section, we will discuss methods to generate images in
cases like these (GANs, cGANs), and some of the uses (such as translation, super-
resolution, etc.) to which image generation can be put.

Generative Adversarial Networks
The type of model most often used for image generation is a generative adversarial
network (GAN). GANs borrow from game theory by pitting two networks against
each other until an equilibrium is reached. The idea is that one network, the genera‐
tor, will constantly try to create better and better reproductions of the real images,
while the other network, the discriminator, will try to get better and better at detect‐
ing the difference between the reproductions and the real images. Ideally, the genera‐
tor and discriminator will establish a Nash equilibrium so that neither network can
completely dominate the other one. If one of the networks does begin to dominate
the other, not only will there be no way for the “losing” network to recover, but also
this unequal competition will prevent the networks from improving each other.

The training alternates between the two networks, each one becoming better at what
it does by being challenged by the other. This continues until convergence, when the
generator has become so good at creating realistic fake images that the discriminator
is only randomly guessing which images are real (coming from the dataset) and
which images are fake (coming from the generator).

The generator and discriminator are both neural networks. Figure 12-14 shows the
overall training architecture.

Image Generation | 399

Figure 12-14. The standard GAN architecture, consisting of a generator and a discrimi‐
nator.

For instance, imagine that a criminal organization wants to create realistic-looking
money to deposit at the bank. In this scenario the criminals would be the generator,
since they are trying to create realistic fake bills. The bankers would be the discrimi‐
nator, examining the bills and trying to ensure the bank doesn’t accept any counterfeit
money.

A typical GAN training would begin with both the generator and the discriminator
initialized with random weights. In our scenario that would mean that the counter‐
feiters have no clue how to generate realistic money: the generated outputs at the
beginning simply look like random noise. Likewise, the bankers would begin not
knowing the difference between a real and a generated bill, so they would be making
terribly ill-informed random guesses as to what is real and what is fake.

The discriminator (the group of bankers) is presented with the first set of legitimate
and generated bills, and has to classify them as real or fake. Because the discriminator
starts off with random weights, initially it can’t “see” easily that one bill is random
noise and the other is a good bill. It’s updated based on how well (or poorly) it per‐
forms, so over many iterations the discriminator will start becoming better at predict‐
ing which bills are real and which are generated. While the discriminator’s weights
are being trained, the generator’s weights are frozen. However, the generator (the
group of counterfeiters) is also improving during its turns, so it creates a moving tar‐
get for the discriminator, progressively increasing the difficulty of the discrimination
task. It’s updated during each iteration based on how well (or not) its bills fooled the
discriminator, and while it’s being trained the discriminator’s weights are frozen.

After many iterations, the generator is beginning to create something resembling real
money because the discriminator was getting good at separating real and generated
bills. This further pushes the discriminator to get even better at separating the now
decent-looking generated bills from the real ones when it is its turn to train.

Eventually, after many iterations of training, the algorithm converges. This happens
when the discriminator has lost its ability to separate generated bills from real bills
and essentially is randomly guessing.

400 | Chapter 12: Image and Text Generation

To see some of the finer details of the GAN training algorithm, we can refer to the
pseudocode in Figure 12-15.

Figure 12-15. A vanilla GAN training algorithm. Image from Goodfellow et al., 2014.

As we can see in the first line of the pseudocode, there is an outer for loop over the
number of alternating discriminator/generator training iterations. We’ll look at each
of these updating phases in turn, but first we need to set up our generator and our
discriminator.

Creating the networks
Before we do any training, we need to create our networks for the generator and dis‐
criminator. In a vanilla GAN, typically this is just a neural network composed of
Dense layers.

The generator network takes a random vector of some latent dimension as input and
passes it through some (possibly several) Dense layers to generate an image. For this
example, we’ll be using the MNIST handwritten digit dataset, so our inputs are 28x28
images. LeakyReLU activation functions usually work very well for GAN training
because of their nonlinearity, not having vanishing gradient problems while also not
losing information for any negative inputs or having the dreaded dying ReLU prob‐
lem. Alpha is the amount of negative signal we want to leak through where a value of
0 would be the same as a ReLU activation and a value of 1 would be a linear activa‐
tion. We can see this in the following TensorFlow code:

Image Generation | 401

https://arxiv.org/pdf/1406.2661.pdf

latent_dim = 512
vanilla_generator = tf.keras.Sequential(
 [
 tf.keras.Input(shape=(latent_dim,)),
 tf.keras.layers.Dense(units=256),
 tf.keras.layers.LeakyReLU(alpha=0.2),
 tf.keras.layers.Dense(units=512),
 tf.keras.layers.LeakyReLU(alpha=0.2),
 tf.keras.layers.Dense(units=1024),
 tf.keras.layers.LeakyReLU(alpha=0.2),
 tf.keras.layers.Dense(units=28 * 28 * 1, activation="tanh"),
 tf.keras.layers.Reshape(target_shape=(28, 28, 1))
],
 name="vanilla_generator"
)

The discriminator network in a vanilla GAN is also made up of Dense layers, but
instead of generating images, it takes images as input, as shown here. The outputs are
vectors of logits:

vanilla_discriminator = tf.keras.Sequential(
 [
 tf.keras.Input(shape=(28, 28, 1)),
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(units=1024),
 tf.keras.layers.LeakyReLU(alpha=0.2),
 tf.keras.layers.Dense(units=512),
 tf.keras.layers.LeakyReLU(alpha=0.2),
 tf.keras.layers.Dense(units=256),
 tf.keras.layers.LeakyReLU(alpha=0.2),
 tf.keras.layers.Dense(units=1),
],
 name="vanilla_discriminator"
)

Discriminator training
Within the outer loop is an inner loop for updating the discriminator. First, we sam‐
ple a mini-batch of noise, typically random samples from a standard normal distribu‐
tion. The random noise latent vector is passed through the generator to create
generated (fake) images, as shown in Figure 12-16.

402 | Chapter 12: Image and Text Generation

Figure 12-16. The generator creates its first batch of generated images by sampling from
the latent space, and passes them to the discriminator.

In TensorFlow, we could for instance sample a batch of random normals using the
following code:

Sample random points in the latent space.
random_latent_vectors = tf.random.normal(shape=(batch_size, self.latent_dim))

We also sample a mini-batch of examples from our dataset—in our case, real images
—as shown in Figure 12-17.

Figure 12-17. We also extract a batch of real images from the training dataset and pass
this to the discriminator.

The generated images from the generator and the real images from the dataset are
each passed through the discriminator, which makes its predictions. Loss terms for
the real images and generated images are then calculated, as shown in Figure 12-18.
Losses can take many different forms: binary cross-entropy (BCE), the average of the
final activation map, second-order derivative terms, other penalties, etc. In the sam‐
ple code, we’ll be using BCE: the larger the real image loss, the more the discrimina‐
tor thought that the real images were fake; the larger the generated image loss, the
more the discriminator thought that the generated images were real.

Image Generation | 403

Figure 12-18. Real and generated samples pass through the discriminator to calculate the
losses.

We do this in the following TensorFlow code (as usual, the complete code is in
12c_gan.ipynb on GitHub). We can concatenate our generated and real images
together and do the same with the corresponding labels so that we can do one pass
through the discriminator:

Generate images from noise.
generated_images = self.generator(inputs=random_latent_vectors)

Combine generated images with real images.
combined_images = tf.concat(
 values=[generated_images, real_images], axis=0
)

Create fake and real labels.
fake_labels = tf.zeros(shape=(batch_size, 1))
real_labels = tf.ones(shape=(batch_size, 1))

Smooth real labels to help with training.
real_labels *= self.one_sided_label_smoothing

Combine labels to be inline with combined images.
labels = tf.concat(
 values=[fake_labels, real_labels], axis=0
)

Calculate discriminator loss.
self.loss_fn = tf.keras.losses.BinaryCrossentropy(from_logits=True)
predictions = self.discriminator(inputs=combined_images)
discriminator_loss = self.loss_fn(y_true=labels, y_pred=predictions)

We first pass our random latent vectors through the generator to obtain a batch of
generated images. This is concatenated with our batch of real images so we have both
sets of images together in one tensor.

We then generate our labels. For the generated images we make a vector of 0s, and for
the real images a vector of 1s. This is because with our BCE loss we are essentially just
doing binary image classification (where the positive class is that of the real images),
and therefore we are getting the probability that an image is real. Labeling the real

404 | Chapter 12: Image and Text Generation

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/12_generation/12c_gan.ipynb

images with 1s and the fake images with 0s encourages the discriminator model to
output probabilities as close to 1 as possible for real images and as close to 0 as possi‐
ble for fake images.

It can be helpful sometimes to add one-sided label smoothing to our real labels,
which involves multiplying them by a float constant in the range [0.0, 1.0]. This helps
the discriminator avoid becoming overconfident in its predictions based on only a
small set of features within the images, which the generator may then exploit (causing
it to become good at beating the discriminator but not at image generation).

Since this is a discriminator training step, we use a combination of these losses to cal‐
culate the gradients with respect to the discriminator weights and then update the
aforementioned weights as shown in Figure 12-19. Remember, during the discrimina‐
tor training phase the generator’s weights are frozen. This way each network gets its
own chance to learn, independent of the other.

Figure 12-19. Discriminator weights are updated with respect to losses.

In the following code we can see this discriminator update being performed:

Train ONLY the discriminator.
with tf.GradientTape() as tape:
 predictions = self.discriminator(inputs=combined_images)
 discriminator_loss = self.loss_fn(
 y_true=labels, y_pred=predictions
)

grads = tape.gradient(
 target=discriminator_loss,
 sources=self.discriminator.trainable_weights
)

self.discriminator_optimizer.apply_gradients(
 grads_and_vars=zip(grads, self.discriminator.trainable_weights)
)

Generator training
After a few steps of applying gradient updates to the discriminator, it’s time to update
the generator (this time with the discriminator’s weights frozen). We can do this in an

Image Generation | 405

inner loop too. This is a simple process where we again take a mini-batch of random
samples from our standard normal distribution and pass them through the generator
to obtain fake images.

In TensorFlow the code would look like this:

Sample random points in the latent space.
random_latent_vectors = tf.random.normal(shape=(batch_size, self.latent_dim))

Create labels as if they're real images.
labels = tf.ones(shape=(batch_size, 1))

Notice that even though these will be generated images, we will label them as real.
Remember, we want to trick the discriminator into thinking our generated images are
real. We can provide the generator with the gradients produced by the discriminator
on images it was not fooled by. The generator can use these gradients to update its
weights so that the next time it can do a better job of fooling the discriminator.

The random inputs pass through the generator as before to create generated images;
however, there are no real images needed for generator training, as you can see in
Figure 12-20.

Figure 12-20. We only use generated images for generator training.

The generated images are then passed through the discriminator as before and a gen‐
erator loss is calculated, as seen in Figure 12-21.

Figure 12-21. Only generated samples pass through the discriminator to calculate the
loss.

Notice that no real images from the dataset are used in this phase. The loss is used to
update only the generator’s weights, as shown in Figure 12-22; even though the dis‐
criminator was used in the generator’s forward pass, its weights are frozen during this
phase so it does not learn anything from this process.

406 | Chapter 12: Image and Text Generation

Figure 12-22. The generator’s weights are updated with respect to the loss.

Here’s the code that performs the generator update:

Train ONLY the generator.
with tf.GradientTape() as tape:
 predictions = self.discriminator(
 inputs=self.generator(inputs=random_latent_vectors)
)
 generator_loss = self.loss_fn(y_true=labels, y_pred=predictions)

grads = tape.gradient(
 target=generator_loss, sources=self.generator.trainable_weights
)

self.generator_optimizer.apply_gradients(
 grads_and_vars=zip(grads, self.generator.trainable_weights)
)

Once this is complete we go back to the discriminator’s inner loop, and so on and so
forth until convergence.

We can call the following code from our vanilla GAN generator TensorFlow model to
see some of the generated images:

gan.generator(
 inputs=tf.random.normal(shape=(num_images, latent_dim))
)

Of course, if the model hasn’t been trained, the images coming out will be random
noise (produced by random noise coming in and going through multiple layers of
random weights). Figure 12-23 shows what our GAN has learned once training on
the MNIST handwritten digit dataset is complete.

Figure 12-23. MNIST digits generated by a vanilla GAN generator.

Distribution changes
GANs definitely have an interesting training procedure compared to more traditional
machine learning models. They may even seem a bit mysterious in terms of how they

Image Generation | 407

work mathematically to learn the things they do. One way of trying to understand
them a little more deeply is to observe the dynamics of the learned distributions of
the generator and discriminator as they each try to outdo the other. Figure 12-24
shows how the generator’s and discriminator’s learned distributions change through‐
out the GAN training.

Figure 12-24. Learned distribution evolution during GAN training. The dashed line is
the discriminator distribution, the solid line is the generator distribution, and the dotted
line is the data generating (true data) distribution. The lower horizontal line is the
domain that z is sampled from for the latent space and the upper horizontal line is a
portion of the domain of x for the image space. The arrows show how z maps to x by x =
G(z). The generator distribution shrinks in regions of low density and expands in regions
of high density of the z to x mapping. Image from Goodfellow et al., 2014.

In Figure 12-24(a) we can see that the generator is not amazing, but is doing a decent
job at generating some of the data distribution. The solid-lined generator distribution
overlaps somewhat with the dotted-lined true data distribution (what we’re trying to
learn to generate from). Likewise, the discriminator does a fairly decent job of classi‐
fying real versus fake samples: it shows a strong signal (dashed line) when overlap‐
ping the dotted-lined data distribution and to the left of the peak of the generator
distribution. The discriminative signal greatly shrinks in the region where the solid-
lined generator distribution peaks.

The discriminator is then trained on another batch of real and generated images from
the fixed generator within the inner discriminator training loop, over some number
of iterations. In Figure 12-24(b) we can see that the dashed-lined discriminator distri‐
bution smooths out, and on the right it follows along the dotted-lined data distribu‐
tion under the solid-lined generator distribution. On the left the distribution is much
higher, and closer to the data distribution. Notice that the solid-lined generator distri‐
bution does not change at this step since we haven’t updated the generator yet.

Figure 12-24(c) shows the results after the generator has been trained for some num‐
ber of iterations. The performance of the newly updated discriminator helps guide it
to shift its network weights and thus fill in some of the gaps it was missing from the

408 | Chapter 12: Image and Text Generation

https://arxiv.org/abs/1406.2661

data distribution, so it gets better at generating fake samples. We can see this as the
solid-lined generator distribution is now much closer to the dotted curve of the data
distribution.

Figure 12-24(d) shows the results after many more iterations alternating between
training the discriminator and the generator. If both networks have enough capacity,
the generator will have converged: its distribution will closely match with the data
distribution, and it will be generating great-looking samples. The discriminator has
also converged because it is no longer able to tell what is a real sample from the data
distribution and what is a generated sample from the generator distribution. Thus,
the discriminator’s distribution flatlines to random guesses with 50/50 odds, and
training of the GAN system is complete.

GAN Improvements
This looks great on paper, and GANs are extremely powerful for image generation—
however, in practice they can be extremely hard to train due to hypersensitivity to
hyperparameters, unstable training, and many failure modes.

If either network gets too good at its job too fast, then the other network will be
unable to keep up, and the generated images will never get to look very realistic.
Another problem is mode collapse, where the generator loses most of its diversity in
creating images and only generates the same few outputs. This happens when it
stumbles upon a generated output that for whatever reason is very good at stumping
the discriminator. This can go on for quite some time during training until, by
chance, the discriminator finally is able to detect that those few images are generated
and not real.

In a GAN, the first network (the generator) has an expanding layer size from its input
layer to its output layer. The second network (the discriminator) has a shrinking layer
size from its input layer to its output layer. Our vanilla GAN architecture used dense
layers, like an autoencoder. However, convolutional layers tend to perform better on
tasks involving images.

A deep convolutional GAN (DCGAN) is more or less just a vanilla GAN with the
dense layers swapped out for convolutional layers. In the following TensorFlow code,
we define a DCGAN generator:

def create_dcgan_generator(latent_dim):
 dcgan_generator = [
 tf.keras.Input(shape=(latent_dim,)),
 tf.keras.layers.Dense(units=7 * 7 * 256),
 tf.keras.layers.LeakyReLU(alpha=0.2),
 tf.keras.layers.Reshape(target_shape=(7, 7, 256)),
] + create_generator_block(
 filters=128, kernel_size=4, strides=2, padding="same", alpha=0.2
) + create_generator_block(

Image Generation | 409

 filters=128, kernel_size=4, strides=2, padding="same", alpha=0.2
) + [
 tf.keras.layers.Conv2DTranspose(
 filters=1,
 kernel_size=3,
 strides=1,
 padding="same",
 activation="tanh"
)
]

 return tf.keras.Sequential(
 layers=dcgan_generator, name="dcgan_generator"
)

Our templated generator block then looks like the following:

def create_generator_block(filters, kernel_size, strides, padding, alpha):
 return [
 tf.keras.layers.Conv2DTranspose(
 filters=filters,
 kernel_size=kernel_size,
 strides=strides,
 padding=padding
),
 tf.keras.layers.BatchNormalization(),
 tf.keras.layers.LeakyReLU(alpha=alpha)
]

Likewise, we can define a DCGAN discriminator like this:

def create_dcgan_discriminator(input_shape):
 dcgan_discriminator = [
 tf.keras.Input(shape=input_shape),
 tf.keras.layers.Conv2D(
 filters=64, kernel_size=3, strides=1, padding="same"
),
 tf.keras.layers.LeakyReLU(alpha=0.2)
] + create_discriminator_block(
 filters=128, kernel_size=3, strides=2, padding="same", alpha=0.2
) + create_discriminator_block(
 filters=128, kernel_size=3, strides=2, padding="same", alpha=0.2
) + create_discriminator_block(
 filters=256, kernel_size=3, strides=2, padding="same", alpha=0.2
) + [
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(units=1)
]

 return tf.keras.Sequential(
 layers=dcgan_discriminator, name="dcgan_discriminator"
)

410 | Chapter 12: Image and Text Generation

And here’s our templated discriminator block:

def create_discriminator_block(filters, kernel_size, strides, padding, alpha):
 return [
 tf.keras.layers.Conv2D(
 filters=filters,
 kernel_size=kernel_size,
 strides=strides,
 padding=padding
),
 tf.keras.layers.BatchNormalization(),
 tf.keras.layers.LeakyReLU(alpha=alpha)
]

As you can see, the generator is upsampling the image using Conv2DTranspose layers
whereas the discriminator is downsampling the image using Conv2D layers.

We can then call the trained DCGAN generator to see what it has learned:

dcgan.generator(
 inputs=tf.random.normal(shape=(num_images, latent_dim))
)

The results are shown in Figure 12-25.

Figure 12-25. Generated MNIST digits produced by the DCGAN generator.

There are many other improvements that can be made to vanilla GANs, such as using
different loss terms, gradients, and penalties. Since this is an active area of research,
those are beyond the scope of this book.

Conditional GANs
The basic GAN that we discussed previously is trained in a completely unsupervised
way on images that we want to learn how to generate. Latent representations, such as
a random noise vector, are then used to explore and sample the learned image space.
A simple enhancement is to add an external flag to our inputs with a label. For
instance, consider the MNIST dataset, which consists of handwritten digits from 0 to
9. Normally, the GAN just learns the distribution of digits, and when the generator is
given random noise vectors it generates different digits, as shown in Figure 12-26.
However, which digits are generated cannot be controlled.

Image Generation | 411

Figure 12-26. Unconditional GAN output.

During training, as with MNIST, we may know the actual label or class designation
for each image. That extra information can be included as a feature in our GAN
training that can then be used at inference time. With conditional GANs (cGANs),
image generation can be conditional on the label, so we are able to home in on the
specific digit of interest’s distribution. Then, at inference time we can create an image
of a specific digit by passing in the desired label instead of receiving a random digit,
as seen in Figure 12-27.

Figure 12-27. Conditional GAN output.

The cGAN generator. We need to make some changes to our vanilla GAN generator
code from earlier so that we can incorporate the label. Essentially, we’ll be concatenat‐
ing our latent vector with a vector representation of our labels, as you can see in the
following code:

Create the generator.
def create_label_vectors(labels, num_classes, embedding_dim, dense_units):
 embedded_labels = tf.keras.layers.Embedding(
 input_dim=num_classes, output_dim=embedding_dim
)(inputs=labels)
 label_vectors = tf.keras.layers.Dense(
 units=dense_units
)(inputs=embedded_labels)

 return label_vectors

Here, we use an Embedding layer to transform our integer labels into a dense repre‐
sentation. We’ll later be combining the embedding of the label with our typical ran‐
dom noise vector to create a new latent vector that is a mixture of the input latent
space and the class labels. We then use a Dense layer to further mix the components.

412 | Chapter 12: Image and Text Generation

Next, we utilize our standard vanilla GAN generator from before. However, this time
we are using the Keras Functional API, as we did for our variational autoencoder ear‐
lier, because we now have multiple inputs to our generator model (the latent vector
and labels):

def standard_vanilla_generator(inputs, output_shape):
 x = tf.keras.layers.Dense(units=64)(inputs=inputs)
 x = tf.keras.layers.LeakyReLU(alpha=0.2)(inputs=x)
 x = tf.keras.layers.Dense(units=128)(inputs=x)
 x = tf.keras.layers.LeakyReLU(alpha=0.2)(inputs=x)
 x = tf.keras.layers.Dense(units=256)(inputs=x)
 x = tf.keras.layers.LeakyReLU(alpha=0.2)(inputs=x)
 x = tf.keras.layers.Dense(
 units=output_shape[0] * output_shape[1] * output_shape[2],
 activation="tanh"
)(inputs=x)

 outputs = tf.keras.layers.Reshape(target_shape=output_shape)(inputs=x)

 return outputs

Now that we have a way to embed our integer labels, we can combine this with our
original standard generator to create a vanilla cGAN generator:

def create_vanilla_generator(latent_dim, num_classes, output_shape):
 latent_vector = tf.keras.Input(shape=(latent_dim,))

 labels = tf.keras.Input(shape=())
 label_vectors = create_label_vectors(
 labels, num_classes, embedding_dim=50, dense_units=50
)

 concatenated_inputs = tf.keras.layers.Concatenate(
 axis=-1
)(inputs=[latent_vector, label_vectors])

 outputs = standard_vanilla_generator(
 inputs=concatenated_inputs, output_shape=output_shape
)

 return tf.keras.Model(
 inputs=[latent_vector, labels],
 outputs=outputs,
 name="vanilla_generator"
)

Notice we now have two sets of inputs using the Keras Input layer. Remember, this is
the main reason we are using the Keras Functional API instead of the Sequential API:
it allows us to have an arbitrary number of inputs and outputs, with any type of net‐
work connectivity in between. Our first input is the standard latent vector, which is
our generated random normal noise. Our second input is the integer labels that we

Image Generation | 413

will condition on later, so we can target certain classes of generated images via labels
provided at inference time. Since, in this example, we are using MNIST handwritten
digits, the labels will be integers between 0 and 9.

Once we’ve created our dense label vectors, we combine them with our latent vectors
using a Keras Concatenate layer. Now we have a single tensor of vectors, each of
shape latent_dim + dense_units. This is our new “latent vector,” which gets sent
into the standard vanilla GAN generator. This isn’t the original latent vector of our
original vector space that we sampled random points from, but is now a new higher-
dimensional vector space due to the concatenation of the encoded label vector.

This new latent vector helps us target specific classes for generation. The class label is
now embedded in the latent vector and therefore will be mapped to a different point
in image space than with the original latent vector. Furthermore, given the same
latent vector, each label pairing will map to a different point in image space because it
is using a different learned mapping due to the different concatenated latent–label
vectors. Therefore, when the GAN is trained it learns to map each latent point to a
point in image space corresponding to an image belonging to one of the 10 classes.

As we can see at the end of the function, we simply instantiate a Keras Model with our
two input tensors and output tensor. Looking at the conditional GAN generator’s
architecture diagram, shown in Figure 12-28, should make clear how we are using the
two sets of inputs, the latent vector and the label, to generate images.

Figure 12-28. Conditional GAN generator architecture.

Now that we’ve seen the generator, let’s take a look at the code for the conditional
GAN discriminator.

The cGAN discriminator. For the generator, we created label vectors that we concaten‐
ated with our latent vectors. For the discriminator, which has image inputs, we
instead convert the labels into images and concatenate the images created from the
labels with the input images. This allows the label information to be embedded into
our images to help the discriminator differentiate between real and generated images.
The label will help warp the latent space to image space mapping such that each input
will be associated with its label’s bubble within image space. For example, for MNIST,

414 | Chapter 12: Image and Text Generation

if the model is given the digit 2, the discriminator will generate something within the
bubble of 2s in the learned image space.

To accomplish the conditional mapping for the discriminator, we once again pass our
integer labels through an Embedding and a Dense layer. However, each example in the
batch is now just a vector num_pixels long. Thus, we use a Reshape layer to trans‐
form the vector into an image with just one channel. Think of it as a grayscale image
representation of our label. In the following code, we can see the labels being embed‐
ded into images:

def create_label_images(labels, num_classes, embedding_dim, image_shape):
 embedded_labels = tf.keras.layers.Embedding(
 input_dim=num_classes, output_dim=embedding_dim)(inputs=labels)
 num_pixels = image_shape[0] * image_shape[1]
 dense_labels = tf.keras.layers.Dense(
 units=num_pixels)(inputs=embedded_labels)
 label_image = tf.keras.layers.Reshape(
 target_shape=(image_shape[0], image_shape[1], 1))(inputs=dense_labels)

 return label_image

As we did for the generator, we will reuse our standard vanilla GAN discriminator
from the previous section that maps images into logit vectors that will be used for loss
calculations with binary cross-entropy. Here’s the code for the standard discriminator,
using the Keras Functional API:

def standard_vanilla_discriminator(inputs):
 """Returns output of standard vanilla discriminator layers.

 Args:
 inputs: tensor, rank 4 tensor of shape (batch_size, y, x, channels).

 Returns:
 outputs: tensor, rank 4 tensor of shape
 (batch_size, height, width, depth).
 """
 x = tf.keras.layers.Flatten()(inputs=inputs)
 x = tf.keras.layers.Dense(units=256)(inputs=x)
 x = tf.keras.layers.LeakyReLU(alpha=0.2)(inputs=x)
 x = tf.keras.layers.Dense(units=128)(inputs=x)
 x = tf.keras.layers.LeakyReLU(alpha=0.2)(inputs=x)
 x = tf.keras.layers.Dense(units=64)(inputs=x)
 x = tf.keras.layers.LeakyReLU(alpha=0.2)(inputs=x)

 outputs = tf.keras.layers.Dense(units=1)(inputs=x)

 return outputs

Now we’ll create our conditional GAN discriminator. It has two inputs: the first is the
standard image input, and the second is the class labels that the images will be condi‐
tioned on. Just like for the generator, we convert our labels into a usable

Image Generation | 415

representation to use with our images—namely, into grayscale images—and we use a
Concatenate layer to combine the input images with the label images. We send those
combined images into our standard vanilla GAN discriminator and then instantiate a
Keras Model using our two inputs, the outputs, and a name for the discriminator
Model:

def create_vanilla_discriminator(image_shape, num_classes):
 """Creates vanilla conditional GAN discriminator model.

 Args:
 image_shape: tuple, the shape of the image without batch dimension.
 num_classes: int, the number of image classes.

 Returns:
 Keras Functional Model.
 """
 images = tf.keras.Input(shape=image_shape)

 labels = tf.keras.Input(shape=())
 label_image = create_label_images(
 labels, num_classes, embedding_dim=50, image_shape=image_shape
)

 concatenated_inputs = tf.keras.layers.Concatenate(
 axis=-1
)(inputs=[images, label_image])

 outputs = standard_vanilla_discriminator(inputs=concatenated_inputs)

 return tf.keras.Model(
 inputs=[images, labels],
 outputs=outputs,
 name="vanilla_discriminator"
)

Figure 12-29 shows the full conditional GAN discriminator architecture.

Figure 12-29. Conditional GAN discriminator architecture.

416 | Chapter 12: Image and Text Generation

The rest of the conditional GAN training process is virtually the same as the non-
conditional GAN training process, except for the fact we now pass in the labels from
our dataset to use both for the generator and the discriminator.

Using a latent_dim of 512 and training for 30 epochs, we can use our generator to
produce images like the ones in Figure 12-30. Note that for each row the label used at
inference was the same, hence why the first row is all zeros, the second row is all ones,
and so on. This is great! Not only can we generate handwritten digits, but we can
specifically generate the digits we want.

Figure 12-30. Generated digits from the conditional vanilla GAN after training on the
MNIST dataset.

We can get even cleaner results if, instead of using our standard vanilla GAN genera‐
tor and discriminator, we use the DCGAN generator and discriminator shown earlier.
Figure 12-31 shows some of the images generated after training the conditional
DCGAN model with a latent_dim of 512 for 50 epochs.

Image Generation | 417

Figure 12-31. Generated digits from the conditional DCGAN after training on the
MNIST dataset.

GANs are powerful tools for generating data. We focused on image generation here,
but other types of data (such as tabular, time series, and audio data) can also be gen‐
erated via GANs. However, GANs are a bit finicky and often require the use of the
tricks we’ve covered here, and many more, to improve their quality and stability. Now
that you’ve added GANs as another tool in your toolbox, let’s look at some advanced
applications that use them.

Image-to-Image Translation
Image generation is one of the simpler applications that GANs are great at. We can
also combine and manipulate the essential components of GANs to put them to other
uses, many of which are state of the art.

Image-to-image translation is when an image is translated from one (source) domain
into another (target) domain. For instance, in Figure 12-32, an image of a horse is
translated so that it looks like the horses are zebras. Of course, since finding paired
images (e.g., the same scene in winter and summer) can be quite difficult, we can
instead create a model architecture that can perform the image-to-image translation
using unpaired images. This might not be as performant as a model working with
paired images, but it can get very close. In this section we will explore how to per‐
form image translation first if we have unpaired images, the more common situation,
and then if we have paired images.

418 | Chapter 12: Image and Text Generation

Figure 12-32. Results of using CycleGAN to translate an image of horses into an image of
zebras. Image from Zhu et al., 2020.

The CycleGAN architecture used to perform the translation in Figure 12-32 takes
GANs one step further and has two generators and two discriminators that cycle back
and forth, as illustrated in Figure 12-33. Continuing with the previous example, let’s
say that horse images belong to image domain X, and zebra images belong to image
domain Y. Remember, these are unpaired images; therefore, there isn’t a matching
zebra image for each horse image, and vice versa.

Figure 12-33. CycleGAN training diagram. Image from Zhu et al., 2020.

In Figure 12-33(a), generator G maps image domain X (horses) to image domain Y
(zebras) while another generator, F, maps the reverse, Y (zebras) to X (horses). This
means that generator G learns weights that map an image of horses, in this example,
to an image of zebras, and vice versa for generator F. Discriminator DX leads genera‐
tor F to have a great mapping from Y (zebras) to X (horses), while discriminator DY
leads generator G to have a great mapping from X (horses) to Y (zebras). We then
perform cycles to add a little more regularization to the learned mappings, as
described in the next panel.

In Figure 12-33(b), the forward cycle consistency loss—X (horses) to Y (zebras) to X
(horses)—is from the comparison of an X (horses) domain image mapped to Y

Image Generation | 419

https://arxiv.org/abs/1703.10593v7
https://arxiv.org/abs/1703.10593v7

(zebras) using generator G and then mapped back to X (horses) using generator F
with the original X (horses) image.

Likewise, in Figure 12-33(c), the backward cycle consistency loss—Y (zebras) to X
(horses) to Y (zebras)—is from the comparison of a Y (zebras) domain image map‐
ped to X (horses) using generator F and then mapped back to Y (zebras) using gener‐
ator G with the original Y (zebras) image.

Both the forward and backward cycle consistency loss compare the original image for
a domain with the cycled image for that domain so that the network can learn to
reduce the difference between them.

By having these multiple networks and ensuring cycle consistency we’re able to get
impressive results despite having unpaired images, such as when translating between
horses and zebras or between summer images and winter images, as in Figure 12-34.

Figure 12-34. Results of using CycleGAN to translate summer images to winter images.
Image from Zhu et al., 2020.

Now, if instead we did have paired examples, then we could take advantage of super‐
vised learning to get even more impressive image-to-image translation results. For
instance, as shown in Figure 12-35, an overhead map view of a city can be translated
into the satellite view and vice versa.

Figure 12-35. Results of using Pix2Pix to translate a map view to satellite view and vice
versa. Image from Isola et al., 2018.

The Pix2Pix architecture uses paired images to create the forward and reverse map‐
pings between the two domains. We no longer need cycles to perform the image-to-
image translation, but instead have a U-Net (previously seen in Chapter 4) with skip
connections as our generator and a PatchGAN as our discriminator, which we discuss
further next.

420 | Chapter 12: Image and Text Generation

https://arxiv.org/abs/1703.10593v7
https://arxiv.org/abs/1611.07004

The U-Net generator takes a source image and tries to create the target image version,
as shown in Figure 12-36. This generated image is compared to the actual paired tar‐
get image via the L1 loss or MAE, which is then multiplied by lambda to weight the
loss term. The generated image (source to target domain) and the input source image
then go to the discriminator with labels of all 1s with a binary/sigmoid cross-entropy
loss. The weighted sum of these losses is used for the gradient calculation for the gen‐
erator to encourage the generator to improve its weights for domain translation in
order to fool the discriminator. The same is done for the other generator/discrimina‐
tor set with the source and target domains reversed for the reverse translation.

Figure 12-36. Pix2Pix generator training diagram. Image from Isola et al., 2018.

The PatchGAN discriminator classifies portions of the input image using smaller-
resolution patches. This way each patch is classified as either real or fake using the
local information in that patch rather than the entire image. The discriminator is
passed two sets of input pairs, concatenated along channels, as shown in
Figure 12-37.

Image Generation | 421

https://arxiv.org/abs/1611.07004

Figure 12-37. Pix2Pix discriminator training diagram. Image from Isola et al., 2018.

The first pair is made up of the input source image and the generated “source to tar‐
get” image from the generator, which the discriminator should classify as fake by
labeling them with all 0s. The second pair is made up of the input source image with
the target image concatenated with it instead of the generated image. This is the real
branch and hence this pair is labeled with all 1s. If we think back to simpler image
generation this is following the same discriminator training pattern where the gener‐
ated images are in the fake, all 0 labels branch and the real images we want to gener‐
ate are in the real, all 1 labels branch. Therefore, the only change compared to image
generation is that we are essentially conditioning the discriminator with the input
image from the source domain, similar to what we did with conditional GANs.

This can lead to amazing use cases such as Figure 12-38, where hand-drawn objects
can be filled in to look like real objects with photographic quality.

422 | Chapter 12: Image and Text Generation

https://arxiv.org/abs/1611.07004

Figure 12-38. Results of using Pix2Pix on a drawing to transform it to an image of pho‐
tographic quality. Image from Isola et al., 2018.

Just like how we can translate text and speech between languages, we can also trans‐
late images between different domains. We can use architectures like CycleGAN with
(much more common) datasets of unpaired images, or more specialized architectures
like Pix2Pix that can take full advantage of paired image datasets. This is still a very
active area of research with many improvements being discovered.

Super-Resolution
For most of the use cases we’ve seen so far we’ve been both training and predicting
with pristine images. However, we know in reality there can often be many defects in
images, such as blur or the resolution being too low. Thankfully, we can modify some
of the techniques we’ve already learned to fix some of those image issues.

Super-resolution is the process of taking a degraded or low-resolution image and
upscaling it, transforming it into a corrected, high-resolution image. Super-resolution
itself has been around for a long time as part of general image processing, yet it wasn’t
until more recently that deep learning models were able to produce state-of-the-art
results with this technique.

The simplest and oldest methods of super-resolution use various forms of pixel inter‐
polation, such as nearest neighbor or bicubic interpolation. Remember that we’re
starting with a low-resolution image that, when upscaled, has more pixels than the
original image. These pixels need to be filled in through some means, and in a way
that looks perceptually correct and doesn’t just produce a smoothed, blurry larger
image.

Figure 12-39 shows a sample of the results from a 2017 paper by Christian Ledig et al.
The original high-resolution image is on the far right. It’s from this image that a
lower-resolution one is created for the training procedure. On the far left is the bicu‐
bic interpolation—it’s a quite smooth and blurry recreation of the starting image
from a smaller, lower-resolution version of the original. For most applications, this is
not of high enough quality.

Image Generation | 423

https://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1609.04802

The second image from the left in Figure 12-39 is an image created by SRResNet,
which is a residual convolutional block network. Here, a version of the original image
that is low resolution, due to Gaussian noise and downsampling, is passed through 16
residual convolutional blocks. The output is a decent super-resolution image that’s
fairly close to the original—however, there are some errors and artifacts. The loss
function used in SRResNet is the mean squared error between each pixel of the super-
resolution output image and the original high-resolution image. Although the model
is able to get pretty good results using MSE loss alone, it’s not quite enough to
encourage the model to make truly photorealistic and perceptually similar images.

Figure 12-39. Super-resolution images. Images from Ledig et al., 2017.

The third image from the left in Figure 12-39 shows the best (in terms of perceptual
quality) results, obtained using a model called SRGAN. The idea to utilize a GAN
came from what the SRResNet image was lacking: high perceptual quality, which we
can quickly judge by looking at the image. This is due to the MSE reconstruction loss,
which aims to minimize the average error of the pixels but doesn’t attempt to ensure
the individual pixels combine to form a perceptually convincing image.

As we saw earlier, GANs generally have both a generator for creating images and a
discriminator to discern whether the images being passed to it are real or generated.
Rather than trying to slowly and painfully manually tune models to create convincing
images, we can use GANs to do this tuning for us automatically. Figure 12-40 shows
the generator and discriminator network architectures of SRGAN.

424 | Chapter 12: Image and Text Generation

https://arxiv.org/abs/1609.04802

Figure 12-40. SRGAN generator and discriminator architectures. Image from Ledig et
al., 2017.

In the SRGAN generator architecture, we begin by taking a high-resolution (HR)
image and applying a Gaussian filter to it, then downsampling the image by some fac‐
tor. This creates a low-resolution (LR) version of the image, which then gets con‐
volved and passed through several residual blocks, like we saw in Chapter 4 with
ResNet. The image is upsampled along the way, since we need to get back to its origi‐
nal size. The network also includes skip connections so that more detail from the ear‐
lier layers can condition the later layers and for better gradient backpropagation
during the backward pass. After a few more convolutional layers, a super-resolution
(SR) image is generated.

The discriminator takes images as input and determines whether they are SR or HR.
The input is passed through several convolutional blocks, ending with a dense layer
that flattens the intermediate images and finally another dense layer that produces the
logits. Just like with a vanilla GAN, these logits are optimized on binary cross-entropy
and so the result is a probability that the image is HR or SR, which is the adversarial
loss term.

With SRGAN, there is another loss term that is weighted together with the adversarial
loss to train the generator. This is the contextual loss, or how much of the original
content remains within the image. Minimizing the contextual loss will ensure that the
output image looks similar to the original image. Typically this is the pixel-wise MSE,
but since that is a form of averaging it can create overly smooth textures that don’t
look realistic. Therefore, SRGAN instead uses what its developers call the VGG loss,
using the activation feature maps for each of the layers of a pretrained 19-layer VGG
network (after each activation, before the respective max-pooling layer). They

Image Generation | 425

https://arxiv.org/abs/1609.04802
https://arxiv.org/abs/1609.04802

calculate the VGG loss as the sum of the Euclidean distance between the feature maps
of the original HR images and the feature maps of the generated SR images, summing
those values across all VGG layers, and then normalizing by the image height and
width. The balance of these two loss terms will create images that not only look simi‐
lar to the input images but also are correctly interpolated so that, perceptually, they
look like real images.

Modifying Pictures (Inpainting)
There can be other reasons to fix an image, such as a tear in a photograph or a miss‐
ing or obscured section, as shown in Figure 12-41(a). This hole-filling is called
inpainting, where we want to literally paint in the pixels that should be in the empty
spot. Typically, to fix such an issue an artist would spend hours or days restoring the
image by hand, as shown in Figure 12-41(b), which is a laborious process and unscal‐
able. Thankfully, deep learning with GANs can make scalably fixing images like this a
reality—Figure 12-41(c) and (d) show some sample results.

Figure 12-41. Context encoder inpainting results. Image from Pathak et al., 2016.

Here, unlike with SRGAN, instead of adding noise or a filter and downsampling a
high-resolution image for training, we extract an area of pixels and set that region
aside. We then pass the remaining image through a simple encoder/decoder network,

426 | Chapter 12: Image and Text Generation

https://arxiv.org/abs/1604.07379

as shown in Figure 12-42. This forms the generator of the GAN, which we hope will
generate content similar to what was in the pixel region we extracted.

Figure 12-42. Context encoder generator and discriminator architectures. Image from
Pathak et al., 2016.

The discriminator then compares the generated region of pixels with the region we
extracted from the original image and tries to determine whether the image was gen‐
erated or came from the real dataset.

Similar to SRGAN, and for the same reasons, the loss function has two terms: a
reconstruction loss and an adversarial loss. The reconstruction loss isn’t the typical L2
distance between the extracted image patch and the generated image patch, but rather
the normalized masked L2 distance. The loss function applies a mask to the overall
image so that we only aggregate the distances of the patch that we reconstructed, and
not the border pixels around it. The final loss is the aggregated distance normalized
by the number of pixels in the region. Alone, this usually does a decent job of creating
a rough outline of the image patch; however, the reconstructed patch is usually lack‐
ing high-frequency detail and ends up being blurry due to the averaged pixel-wise
error.

The adversarial loss for the generator comes from the discriminator, which helps the
generated image patch appear to come from the manifold of natural images and
therefore look realistic. These two loss functions can be combined in a weighted sum
joint loss.

The extracted image patches don’t just have to come from the central region, like in
Figure 12-43(a)—in fact, that approach can be detrimental to the training as a result
of poor generalization of the learned low-level image features to images without

Image Generation | 427

https://arxiv.org/abs/1604.07379

patches extracted. Instead, taking random blocks, as in Figure 12-43(b), or random
regions of pixels, as shown in Figure 12-43(c), produces more general features and
greatly outperforms the approach of using a central region mask.

Figure 12-43. Different extracted patch region masks. Image from Pathak et al., 2016.

Anomaly Detection
Anomaly detection is another application that can benefit from the use of GANs—
images can be passed to a modified GAN model and flagged as anomalous or not.
This can be useful for tasks such as counterfeit currency detection, or looking for
tumors in medical scans.

Typically there is a lot more unlabeled data available for deep learning use cases than
labeled, and often the process of labeling is extremely laborious and may require deep
subject matter expertise. This can make a supervised approach infeasible, which
means we need an unsupervised approach.

To perform anomaly detection, we need to learn what “normal” looks like. If we know
what normal is, then when an image doesn’t fit within that distribution, it may con‐
tain anomalies. Therefore, when training anomaly detection models, it is important
to train the model only on normal data. Otherwise, if the normal data is contamina‐
ted with anomalies, then the model will learn that those anomalies are normal. At
inference time, this would lead to actual anomalous images not being correctly flag‐
ged, thus generating many more false negatives than may be acceptable.

The standard method of anomaly detection is to first learn how to reconstruct nor‐
mal images, then learn the distribution of reconstruction errors of normal images,
and finally learn a distance threshold where anything above that threshold is flagged
as anomalous. There are many different types of models we can use to minimize the

428 | Chapter 12: Image and Text Generation

https://arxiv.org/abs/1604.07379

reconstruction error between the input image and its reconstruction. For example,
using an autoencoder, we can pass normal images through the encoder (which com‐
presses an image down to a more compact representation), possibly through a layer
or two in the bottleneck, then through the decoder (which expands the image back to
its original representation), and finally generate an image that should be a reconstruc‐
tion of the original image. The reconstruction is never perfect; there is always some
error. Given a large collection of normal images, the reconstruction error will form a
distribution of “normal errors.” Now, if the network is given an anomalous image—
one that it has not seen anything like during training—it will not be able to compress
and reconstruct it correctly. The reconstruction error will be way out of the normal
error distribution. The image can thus be flagged as an anomalous image.

Taking the anomaly detection use case one step further, we could instead perform
anomaly localization, where we are flagging individual pixels as anomalous. This is
like an unsupervised segmentation task rather than an unsupervised classification
task. Each pixel has an error, and this can form a distribution of errors. In an anoma‐
lous image, many pixels will exhibit a large error. Reconstructed pixels above a cer‐
tain distance threshold from their original versions can be flagged as anomalous, as
shown in Figure 12-44.

Figure 12-44. Anomaly localization flags individual pixels as anomalous. Image from
Schlegl et al., 2019.

However, for many use cases and datasets this isn’t the end of the story. With just the
autoencoder and reconstruction loss, the model may learn how to map any image to
itself instead of learning what normal looks like. Essentially, reconstruction domi‐
nates the combined loss equation and therefore the model learns the best way to com‐
press any image, rather than learning the “normal” image manifold. For anomaly
detection this is very bad because the reconstruction loss for both normal and

Image Generation | 429

https://oreil.ly/bsOpV

anomalous images will be similar. Therefore, as with super-resolution and inpainting,
using a GAN can help.

This is an active area of research, so there are many competing variations of model
architectures, loss functions, training procedures, etc., but they all have several com‐
ponents in common, as seen in Figure 12-45. Typically they consist of a generator and
discriminator, sometimes with additional encoder and decoder networks depending
on the use case.

Figure 12-45. Skip-GANomaly architecture, using a U-Net generator (encoder/decoder)
with skip connections, discriminator, and multiple loss terms. Image from Akçay et al.,
2019.

The generator can be an autoencoder or U-Net, if the input and output are images, as
in Figure 12-45’s G, or the generator can just be a decoder that takes as input a user-
provided random latent vector. This image autoencoder, since it’s part of a GAN, is
also sometimes called an adversarial autoencoder.

The discriminator, such as Figure 12-45’s D, is used to adversarially train the genera‐
tor. This is typically an encoder-type network, compressing an image down into a
vector of logits to then be used for loss calculations.

As mentioned previously, sometimes there’s an additional encoder or multiple gener‐
ator/discriminator pairs. If the generator is an autoencoder, the additional encoder
can be used for regularizing the intermediate bottleneck vector of the generator. If the
generator is just a decoder, then the encoder can encode the generator’s generated
image into a feature vector to reconstruct the noise prior, essentially acting as the
inverse of the generator.

430 | Chapter 12: Image and Text Generation

https://arxiv.org/abs/1901.08954
https://arxiv.org/abs/1901.08954

As with SRGAN and inpainting, there are usually multiple loss terms: namely a
reconstruction loss such as Lcon and an adversarial loss such as Ladv in the example
architecture in Figure 12-45. Additionally, there can be other loss terms like
Figure 12-45’s Llat, which is a latent loss that sums the Euclidean distance between two
feature maps in an intermediate layer from the discriminator. The weighted sum of
these losses is designed to encourage the desired inference behavior. The adversarial
loss ensures that the generator has learned the manifold of normal images.

The three-phase training procedure of image reconstruction, calculating the normal
prediction error distribution, and applying the distance threshold will produce differ‐
ent results depending on whether normal or anomalous images are passed through
the trained generator. Normal images will look very similar to the original images, so
their reconstruction error will be low; therefore, when compared to the learned para‐
meterized error distribution, they will have distances that are below the learned thres‐
hold. However, when the generator is passed an anomalous image, the reconstruction
will no longer just be slightly worse. Therefore, the anomalies should be painted out,
generating what the model thinks the image would look like without anomalies. The
generator will essentially hallucinate what it thinks should be there based on its
learned normal image manifold. Obviously this should result in a very large error
when compared to the original anomalous image, allowing us to correctly flag the
anomalous images or pixels for anomaly detection or localization, respectively.

Deepfakes
A popular technique that has recently exploded into the mainstream is the making of
so-called deepfakes. Deepfakes replace objects or people in existing images or videos
with different objects or people. The typical models used to create these deepfake
images or videos are autoencoders or, with even better performance, GANs.

One method of creating deepfakes is to create one encoder and two decoders, A and
B. Let’s say we are trying to swap person X’s face with person Y’s. First, we distort an
image of person X’s face and pass that through the encoder to get the embedding,
which is then passed through decoder A. This encourages the two networks to learn
how to reconstruct person X’s face from the noisy version. Next, we pass a warped
version of person Y’s face through the same encoder, and pass it through decoder B.
This encourages these two networks to learn how to reconstruct person Y’s face from
the noisy version. We repeat this process over and over again until decoder A is great
at producing clean images of person X and decoder B is great for person Y. The three
networks have learned the essence of the two faces.

At inference time, if we now pass an image of person X through the encoder and then
through decoder B, which was trained on the other person (person Y) instead of
person X, the networks will think that the input is noisy and “denoise” the image into

Image Generation | 431

person Y’s face. Adding a discriminator for an adversarial loss can help improve the
image quality.

There have been many other advancements in the creation of deepfakes, such as
requiring only a single source image (often demonstrated by running the deepfake on
a work of art such as the Mona Lisa). Remember, though, that to achieve great results,
a lot of data is required to sufficiently train the networks.

Deepfakes are something that we need to keep a close eye on due to their possible
abuse for political or financial gain—for instance, making a politician appear to say
something they never did. There is a lot of active research looking into methods to
detect deepfakes.

Image Captioning
So far in this chapter, we have looked at how to represent images (using encoders)
and how to generate images from those representations (using decoders). Images are
not the only thing worth generating from image representations, though—we might
want to generate text based on the content of the images, a problem known as image
captioning.

Image captioning is an asymmetric transformation problem. The encoder here oper‐
ates on images, whereas the decoder needs to generate text. A typical approach is to
use standard models for the two tasks, as shown in Figure 12-46. For example, we
could use the Inception convolutional model to encode images into image embed‐
dings, and a language model (marked by the gray box) for the sequence generation.

Figure 12-46. High-level image captioning architecture.

There are two important concepts that are necessary to understand what’s happening
in the language model: attention and gated recurrent units (GRUs).

432 | Chapter 12: Image and Text Generation

Attention is important for the model to learn the relationships between specific parts
in the image and specific words in the caption. This is accomplished by training the
network such that it learns to focus its attention on specific parts of the image for spe‐
cific words in the output sequence (see Figure 12-47). Therefore, the decoder incor‐
porates a mechanism that attends over the image to predict the next word.

Figure 12-47. The model learns to predict the next word in the sequence by focusing its
attention on the relevant part of the input image. The attention of the network at the
time the word “frisbee” is to be predicted is shown in this figure. Image from Xu et al.,
2016.

A GRU cell is the basic building block of a sequence model. Unlike the image models
that we have seen in this book, language models need to remember what words they
have already predicted. In order for a language model to take an English input sen‐
tence (“I love you”) and translate it into French (“Je t’aime”), it is insufficient for the
model to translate the sentence word-by-word. Instead, the model needs to have
some memory. This is accomplished through a GRU cell that has an input, an output,
an input state, and an output state. In order to predict the next word, the state is
passed around from step to step, and the output of one step becomes the input to the
next.

In this section we will build an end-to-end captioning model, starting with creating
the dataset and preprocessing the captions and moving on to building the captioning
model, training it, and using it to make predictions.

Dataset
To train a model to predict captions, we need a training dataset that consists of
images and captions for those images. The COCO captions dataset is a large corpus
of such captioned images. We will use a version of the COCO dataset that is part of
TensorFlow Datasets—this version contains images, bounding boxes, labels, and cap‐
tions from COCO 2014, split into the subsets defined by Karpathy and Li (2015), and

Image Captioning | 433

https://arxiv.org/abs/1502.03044v3
https://arxiv.org/abs/1502.03044v3
https://oreil.ly/t4xr6

takes care of some data quality issues with the original dataset (for example, some of
the images in the original dataset did not have captions).

We can create a training dataset using the following code (the full code is in
02e_image_captioning.ipynb on GitHub):

def get_image_label(example):
 captions = example['captions']['text'] # all the captions
 img_id = example['image/id']
 img = example['image']
 img = tf.image.resize(img, (IMG_WIDTH, IMG_HEIGHT))
 img = tf.keras.applications.inception_v3.preprocess_input(img)
 return {
 'image_tensor': img,
 'image_id': img_id,
 'captions': captions
 }

 trainds = load_dataset(...).map(get_image_label)

This code applies the get_image_label() function to each of the examples that are
read. This method pulls out the captions and the image tensor. The images are all dif‐
ferent sizes, but we need them to be of shape (299, 299, 3) in order to use the pre‐
trained Inception model. Therefore, we resize each image to the desired size.

Each image has multiple captions. A few example images and the first caption of each
are shown in Figure 12-48.

Figure 12-48. A few example images and the first caption for these images from the
COCO dataset.

Tokenizing the Captions
Given a caption such as:

A toilet and sink in a tiled bathroom.

we need to remove punctuation, lowercase it, split into words, remove unusual
words, add special start and stop tokens, and pad it to a consistent length:

434 | Chapter 12: Image and Text Generation

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/12_generation/02e_image_captioning.ipynb

['<start>', 'a', 'toilet', 'and', 'sink', 'in', 'a', 'tiled', 'bathroom', '<end>'
, '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>'
, '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>'
, '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>'
, '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>'
, '<pad>', '<pad>', '<pad>']

We start by adding the <start> and <end> tokens to each caption string:

train_captions = []
for data in trainds:
 str_captions = ["<start> {} <end>".format(
 t.decode('utf-8')) for t in data['captions'].numpy()]
 train_captions.extend(str_captions)

Then we use the Keras tokenizer to create the word-to-index lookup table:

tokenizer = tf.keras.layers.experimental.preprocessing.TextVectorization(
 max_tokens=VOCAB_SIZE, output_sequence_length=MAX_CAPTION_LEN)
tokenizer.adapt(train_captions)

The tokenizer can now be used to do the lookups in both directions:

padded = tokenizer(str_captions)
predicted_word = tokenizer.get_vocabulary()[predicted_id]

Batching
Each image in the COCO dataset can have up to five captions. So, given an image, we
can actually generate up to five feature/label pairs (the image is the feature, the cap‐
tion is the label). Because of this, creating a batch of training features is not as easy as:

trainds.batch(32)

since these 32 examples will expand into anywhere from 32 to 32 * 5 potential exam‐
ples. We need batches to be of consistent size, so we will have to use the training data‐
set to generate the necessary examples before batching them:

def create_batched_ds(trainds, batchsize):
 # generator that does tokenization, padding on the caption strings
 # and yields img, caption
 def generate_image_captions():
 for data in trainds:
 captions = data['captions']
 img_tensor = data['image_tensor']
 str_captions = ["starttoken {} endtoken".format(
 t.decode('utf-8')) for t in captions.numpy()]
 # Pad each vector to the max_length of the captions
 padded = tokenizer(str_captions)
 for caption in padded:
 yield img_tensor, caption # repeat image
 return tf.data.Dataset.from_generator(
 generate_image_captions,
 (tf.float32, tf.int32)).batch(batchsize)

Image Captioning | 435

Note that we are reading the caption strings, and applying the same processing to
each of these strings that we did in the previous section. That was for the purpose of
creating the word-to-index lookup tables and computing the maximum caption
length over the entire dataset so that captions can be padded to the same length. Here,
we simply apply the lookup tables and pad the captions based on what was calculated
over the full dataset.

We can then create batches of 193 image/caption pairs by:

create_batched_ds(trainds, 193)

Captioning Model
The model consists of an image encoder followed by a caption decoder (see
Figure 12-46). The caption decoder incorporates an attention mechanism that focuses
on different parts of the input image.

Image encoder

The image encoder consists of the pretrained Inception model followed by a Dense
layer:

class ImageEncoder(tf.keras.Model):
 def __init__(self, embedding_dim):
 inception = tf.keras.applications.InceptionV3(
 include_top=False,
 weights='imagenet'
)
 self.model = tf.keras.Model(inception.input,
 inception.layers[-1].output)
 self.fc = tf.keras.layers.Dense(embedding_dim)

Invoking the image encoder applies the Inception model, flattens the result from the
[batch, 8, 8, 2048] that Inception returns to [batch, 64, 2048], and passes it through
the Dense layer:

def call(self, x):
 x = self.model(x)
 x = tf.reshape(x, (x.shape[0], -1, x.shape[3]))
 x = self.fc(x)
 x = tf.nn.relu(x)
 return x

Attention mechanism
The attention component is complicated—look at the following description in con‐
junction with Figure 12-46 and the complete code in 02e_image_captioning.ipynb on
GitHub.

436 | Chapter 12: Image and Text Generation

https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/12_generation/02e_image_captioning.ipynb
https://github.com/GoogleCloudPlatform/practical-ml-vision-book/blob/master/12_generation/02e_image_captioning.ipynb

Recall that attention is how the model learns the relationships between specific parts
in the image and specific words in the caption. The attention mechanism consists of
two sets of weights—W1 is a dense layer meant for the spatial component (features,
where in the image to focus on), and W2 is a dense layer for the “temporal” component
(indicating which word in the input sequence to focus on):

attention_hidden_layer = (tf.nn.tanh(self.W1(features) +
 self.W2(hidden_with_time_axis)))

The weighted attention mechanism is applied to the hidden state of the recurrent
neural network to compute a score:

score = self.V(attention_hidden_layer)
attention_weights = tf.nn.softmax(score, axis=1)

V here is a dense layer that has a one output node that is passed through a softmax
layer to obtain a final combined weight that adds up to 1 across all the words. The
features are weighted by this value, and this is an input to the decoder:

context_vector = attention_weights * features

This attention mechanism is part of the decoder, which we’ll look at next.

Caption decoder
Recall that the decoder needs to have some memory of what it has predicted in the
past, and so the state is passed around from step to step, with the output of one step
becoming the input to the next. Meanwhile, during training, the caption words are
fed into the decoder one word at a time.

The decoder takes the caption words one a time (x in the following listing) and con‐
verts each word into its word embedding. The embedding is then concatenated with
the context output of the attention mechanism (which specifies where in the image
the attention mechanism is currently focused) and passed into a recurrent neural net‐
work cell (a GRU cell is used here):

x = self.embedding(x)
x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)
output, state = self.gru(x)

The output of the GRU cell is then passed through a set of dense layers to obtain the
decoder output. The output here would normally be a softmax because the decoder is
a multilabel classifier—we need the decoder to tell which of the five thousand words
the next word needs to be. However, for reasons that will become apparent in the sec‐
tion on predictions, it is helpful to keep the output as logits.

Putting these pieces together, we have:

encoder = ImageEncoder(EMBED_DIM)
decoder = CaptionDecoder(EMBED_DIM, ATTN_UNITS, VOCAB_SIZE)
optimizer = tf.keras.optimizers.Adam()

Image Captioning | 437

loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
 from_logits=True, reduction='none')

The loss function of the captioning model is a bit tricky. It’s not simply the mean
cross-entropy over the entire output, because we need to ignore the padded words.
Therefore, we define a loss function that masks out the padded words (which are all
zeros) before computing the mean:

def loss_function(real, pred):
 mask = tf.math.logical_not(tf.math.equal(real, 0))
 loss_ = loss_object(real, pred)
 mask = tf.cast(mask, dtype=loss_.dtype)
 loss_ *= mask
 return tf.reduce_mean(loss_)

Training Loop
Now that our model has been created, we can move on to training it. You might have
noticed that we don’t have a single Keras model—we have an encoder and a decoder.
That is because it is not enough to call model.fit() on the entire image and caption
—we need to pass in the caption words to the decoder one by one because the
decoder needs to learn how to predict the next word in the sequence.

Given an image and a target caption, we initialize the loss and reset the decoder state
(so that the decoder doesn’t continue with the words of the previous caption):

def train_step(img_tensor, target):
 loss = 0
 hidden = decoder.reset_state(batch_size=target.shape[0])

The decoder input starts with a special start token:

dec_input = ... tokenizer(['starttoken'])...

We invoke the decoder and compute the loss by comparing the decoder’s output
against the next word in the caption:

for i in range(1, target.shape[1]):
 predictions, hidden, _ = decoder(dec_input, features, hidden)
 loss += loss_function(target[:, i], predictions)

We are adding the ith word to the decoder input each time so that the model learns
based on the correct caption, not based on whatever the predicted word is:

dec_input = tf.expand_dims(target[:, i], 1)

This is called teacher forcing. Teacher forcing swaps the target word in the input with
the predicted word from the last step.

The whole set of operations just described has to be captured for the purpose of com‐
puting gradient updates, so we wrap it in a GradientTape:

438 | Chapter 12: Image and Text Generation

with tf.GradientTape() as tape:
 features = encoder(img_tensor)
 for i in range(1, MAX_CAPTION_LENGTH):
 predictions, hidden, _ = decoder(dec_input, features, hidden)
 loss += loss_function(target[:, i], predictions)
 dec_input = tf.expand_dims(target[:, i], 1)

We can then update the loss, and apply gradients:

 total_loss = (loss / MAX_CAPTION_LENGTH)
 trainable_variables = \
 encoder.trainable_variables + decoder.trainable_variables
 gradients = tape.gradient(loss, trainable_variables)
 optimizer.apply_gradients(zip(gradients, trainable_variables))

Now that we have defined what happens in a single training step, we can loop
through it for the desired number of epochs:

batched_ds = create_batched_ds(trainds, BATCH_SIZE)
for epoch in range(EPOCHS):
 total_loss = 0
 num_steps = 0
 for batch, (img_tensor, target) in enumerate(batched_ds):
 batch_loss, t_loss = train_step(img_tensor, target)
 total_loss += t_loss
 num_steps += 1
 # storing the epoch end loss value to plot later
 loss_plot.append(total_loss / num_steps)

Prediction
For the purpose of prediction, we are given an image and need to generate a caption.
We start the caption string with the token <start> and feed the image and the initial
token to the decoder. The decoder returns a set of logits, one for each of the words in
our vocabulary.

Now we need to use the logits to get the next word. There are several approaches we
could follow:

• A greedy approach where we pick the word with the maximum log-likelihood.
This essentially means that we do tf.argmax() on the logits. This is fast but
tends to overemphasize uninformative words like “a” and “the.”

• A beam search method where we pick the top three or five candidates. We will
then force the decoder with each of these words, and pick the next word in the
sequence. This creates a tree of output sequences, from which the highest-
probability sequence is selected. Because this optimizes the probability of the
sequence rather than of individual words, it tends to give the best results, but it’s
computationally quite expensive and can lead to high latencies.

Image Captioning | 439

• A probabilistic method where we choose the word in proportion to its likelihood
—in TensorFlow, this is achieved using tf.random.categorical(). If the word
following “crowd” is 70% likely to be “people” and 30% likely to be “watching,”
then the model chooses “people” with a 70% likelihood, and “watching” with a
30% probability, so that the less likely phrase is also explored. This is a reasonable
trade-off that achieves both novelty and speed at the expense of being nonrepro‐
ducible.

Let’s try out the third approach.

We start by applying all the preprocessing to the image, and then send it to the image
encoder:

def predict_caption(filename):
 attention_plot = np.zeros((max_caption_length, ATTN_FEATURES_SHAPE))
 hidden = decoder.reset_state(batch_size=1)
 img = tf.image.decode_jpeg(tf.io.read_file(filename),
 channels=IMG_CHANNELS)
 img = tf.image.resize(img, (IMG_WIDTH, IMG_HEIGHT)) # inception size
 img_tensor_val = tf.keras.applications.inception_v3.preprocess_input(img)

 features = encoder(tf.expand_dims(img_tensor_val, axis=0))

We then initialize the decoder input with the token <start> and invoke the decoder
repeatedly until an <end> caption is received or the maximum caption length is
reached:

dec_input = tf.expand_dims([tokenizer(['starttoken'])], 0)
result = []
for i in range(max_caption_length):
 predictions, hidden = decoder(dec_input, features, hidden)
 # draws from log distribution given by predictions
 predicted_id = tf.random.categorical(predictions, 1)[0][0].numpy()
 result.append(tokenizer.vocabulary()[predicted_id])
 if tokenizer.vocabulary()[predicted_id] == 'endtoken':
 return result
 dec_input = tf.expand_dims([predicted_id], 0)

return img, result, attention_plot

An example image and captions generated from it are shown in Figure 12-49. The
model seems to have captured that this is a group of people on a field playing base‐
ball. However, the model believes that there is a high likelihood that the white line in
the center is the median divider of a street, and that this game could have been played
on the street. Stopwords (of, in, and, a, etc.) are not generated by the model because
we removed them from the training dataset. Had we had a larger dataset, we could
have tried to generate proper sentences by keeping those stopwords in.

440 | Chapter 12: Image and Text Generation

Figure 12-49. An example image, courtesy of the author, and a few of the captions gener‐
ated by the model.

At this point, we now have an end-to-end image captioning model. Image captioning
is an important way to make sense of a large corpus of images and is starting to find
use in a number of applications, such as generating image descriptions for the visually
impaired, meeting accessibility requirements in social media, generating audio guides
like those used in museums, and performing cross-language annotation of images.

Summary
In this chapter, we looked at how to generate images and text. To generate images, we
first create latent representations of images using an autoencoder (or variational
autoencoder). A latent vector passed through a trained decoder functions as an image
generator. In practice, however, the generated images are too obviously fake. To
improve the realism of the generated images, we can use GANs, which use a game
theoretic approach to train a pair of neural networks. Finally, we looked at how to
implement image captioning by training an image encoder and a text decoder along
with an attention mechanism.

Summary | 441

Afterword

In 1966, MIT professor Seymour Papert launched a summer project for his students.
The final goal of the project was to name objects in images by matching them with a
vocabulary of known objects. He helpfully broke the task down for them into subpro‐
jects, and expected the group to be done in a couple of months. It’s safe to say that Dr.
Papert underestimated the complexity of the problem a little.

We started this book by looking at naive machine learning approaches like fully con‐
nected neural networks that do not take advantage of the special characteristics of
images. In Chapter 2, trying the naive approaches allowed us to learn how to read in
images, and how to train, evaluate, and predict with machine learning models.

Then, in Chapter 3, we introduced many of the innovative concepts—convolutional
filters, max-pooling layers, skip connections, modules, squeeze activation, and so on
—that enable modern-day machine learning models to work well at extracting infor‐
mation from images. Implementing these models, practically speaking, involves using
either a built-in Keras model or a TensorFlow Hub layer. We also covered transfer
learning and fine-tuning in detail.

In Chapter 4, we looked at how to use the computer vision models covered in Chap‐
ter 3 to solve two more fundamental problems in computer vision: object detection
and image segmentation.

The next few chapters of the book covered, in depth, each of the stages involved in
creating production computer vision machine learning models:

• In Chapter 5, we covered how to create a dataset in a format that will be efficient
for machine learning. We also discussed the options available for label creation
and for keeping an independent dataset for model evaluation and hyperparame‐
ter tuning.

443

https://oreil.ly/AC3Xh

• In Chapter 6, we did a deep dive into preprocessing and preventing training-
serving skew. Preprocessing can be done in the tf.data input pipeline, in Keras
layers, in tf.transform, or using a mix of these methods. We covered both the
implementation details and the pros and cons of each approach.

• In Chapter 7, we discussed model training, including how to distribute the train‐
ing across GPUs and workers.

• In Chapter 8, we explored how to monitor and evaluate models. We also looked
at how to carry out sliced evaluations to diagnose unfairness and bias in our
models.

• In Chapter 9, we discussed the options available for deploying models. We imple‐
mented batch, streaming, and edge prediction. We were able to invoke our mod‐
els locally, and across the web.

• In Chapter 10, we showed you how to tie together all these steps into a machine
learning pipeline. We also tried out a no-code image classification system to take
advantage of the ongoing democratization of machine learning.

In Chapter 11, we widened our lens beyond image classification. We looked at how
the basic building blocks of computer vision can be used to solve a variety of prob‐
lems including counting, pose detection, and other use cases. Finally, in Chapter 12,
we looked at how to generate images and captions.

Throughout the book, the concepts, models, and processes discussed are accompa‐
nied by implementations in GitHub. We strongly recommend that you not just read
this book, but also work through the code and try it out. The best way to learn
machine learning is to do it.

Computer vision is at an exciting stage. The underlying technologies work well
enough that today, more than 50 years after Dr. Papert posed the problem to his stu‐
dents, we are finally at the point where image classification can be a two-month
project! We wish you much success in applying this technology to better human lives
and hope that it brings you as much joy to use computer vision to solve real-world
problems as it has brought us.

444 | Afterword

https://github.com/GoogleCloudPlatform/practical-ml-vision-book

Index

Symbols
3D convolution, 187

(see also Conv3D)
@tf.function annotation, 255, 306

A
absolute loss, 150
abstraction, improving for model prediction

API, 308
accelerators, 309

(see also GPUs; TPUs)
batch prediction performance and, 320
for edge ML, 322
on cloud service providers, 310

accuracy, 26, 287
classification, 288
defined, 50
imbalanced datasets and, 66
plotting, 30
plotting, 37

activation functions, 22
defined, 50
image regression, 31
introducing in Keras, 35
LeakyReLU, 401
None, 31
nonlinear, adding for hidden layer output,

34
nonlinear, sigmoid, ReLU, and elu, 35

activation parameter (convolutional layer), 71
adagrad (adaptive gradients) optimizer, 22
Adam optimizer, 22

default learning rate, changing, 38
AdamW optimizer, 65

advanced vision problems (see vision problems,
advanced)

Aequitas Fairness Tree, 198
AlexNet, 75-79

at a glance, 78
implementing in Keras, 78

AlexNet paper, 4
Amazon CloudWatch, GPU monitoring on

AWS, 247
Amazon SageMaker, 266

Clarify, support for SHAP, 343
anchor boxes, 142-145
anomaly detection, 428-431
anomaly localization, 429
Apache Beam, 317

batch prediction pipeline, combining with
REST API approach, 320

converting JPEG image files to TFRecords,
200

pipeline executing on Kubeflow cluster, 333
pipeline in creating vision dataset, 201
running code on Google Cloud Dataflow,

202
writing pipeline to carry out preprocessing,

222
Apache Spark, 317
area under the curve (AUC), 27, 50, 291
arrays, 13

converting to/from tensors, 13
Arthropod Taxonomy Orders Object Detection

(Arthropods) dataset, 133
attention mechanism (captioning model), 436
audio and video data, 184-187

Conv3D, use on video, 186

445

image processing, frame by frame on videos,
186

spectrograms, 184
converting audio signal into log of the

spectrogram, 185
augmenting data (see data augmentation)
autoencoders, 385-392, 393

(see also variational autoencoders)
architecture, 387
converting images into latent vectors,

388-392
problems with, for image generation, 392
reverse operations for common Keras lay‐

ers, 388
training the model, 388

AutoML, 126
uses of, 351
using on 5-flowers dataset

evaluation results, 354
loading data, 351
training the model, 353

AutoML Vision, 350
auxiliary learning tasks, 385
average pooling, 73
axis parameter (reduce_mean), 16

B
BackupAndRestore callback, 260
base64 encoding, 316
batch normalization, 50

adding to upsampling steps, 170
in deep neural networks, 46

batch prediction, 309, 317-321
Apache Beam pipeline for, 317-319
invoking online prediction, 320
managed service for, 319

batches, 22, 50
batched inputs requirement for Keras mod‐

els, 220
impact of changing batch size on linear

model, 248
increasing size for distributed training, 262
Keras model operating on, 247
preprocessing and, 211

batching
grayscale computation on batches of images,

252
image/caption pairs, 435

Bayesian optimization, 42

beam search, 439
BERT, 185
bi-directional feature pyramid network

(BiFPN), 172
bias, 195-198

confirmation, 197
detecting, 198
determining sources of through explainabil‐

ity, 337
measurement, 196
against minorities, in ML pipeline, 302
selection, 196
sources of, 195

BigQuery distributed data warehouse, 375
bilinear interpolation, 161
binary classification, metrics for, 287-292
binary cross-entropy (BCE), 403
bounding box loss, 138
bounding box predictions, 132, 134, 161

C
callbacks

BackupAndRestore, 260
displaying predictions, 170
EarlyStopping, passing to model.fit, 41
implementing checkpointing in Keras, 259
TensorBoard, 285

captioning, image, 432-441, 444
batching image/caption pairs, 435
captioning model, 436-438

attention mechanism, 436
caption decoder, 437
image encoder, 436

dataset, 433
prediction, 439-441
tokenizing captions, 434
training loop, 438

Cartesian coordinate system, transforming
radar and ultrasound images to, 176

categorical cross-entropy loss function, 24, 25
CenterCrop augmentation layer, 274
central limit theorem (CLT) , 283
channel-wise concatenation, 99
channels, 180-182

channel order for images, 181
geospatial layers as image channels, 178
grayscale images, 182
image, 67
imaging images, 176

446 | Index

of output values, 69
in 1x1 convolutions, 82
satellite images, 177
scaling of pixel values, 180

channels-first ordering, 181
channels-last ordering, 181
checkpointing, 258-260, 315
Clarifai labeling service, 193
class prediction head (RetinaNet), 146
class predictions, 161
classification

metrics for, 287-296
binary classification, 287-292
multiclass, multilabel classification,

294-296
multiclass, single-label classification,

292-294
object detection classifier to detect and

count berries, 364
classification models

embeddings and, 56
probability, odds, logits, sigmoid, and soft‐

max, 20
client programs

in-memory model loaded and invoked
from, 306

requirements for machines they're running
on, 309

requirements for the programmer, 308
Cloud Dataflow, 329

running Apache Beam on, 202-204, 317
cloud services, running TensorFlow Serving on,

310
Cloud SQL, 329
Cloud Storage, 329

loading data into, 351
Cloud TPU, running training job submitted to

Vertex Training on, 271
COCO captions dataset, 433
color distortion (contrast and brightness),

229-232, 248
vectorizing, 248

compiling Keras model, 19
compression

trade-off with expressivity, 386
using uncompressed images, 176

Compute Engine machine type, 269
computer vision, 10

current stage of, 444

Computer Vision Annotation Tool, 190
Concatenate layer, 414, 416
conditional GANs, 411-418

cGAN discriminator, 414-418
cGAN generator, 412-414

conditionals, slicing and, 251
confirmation bias, 197
confusion matrix, 285

binary classification, 287
dog classification example, 293
multiclass, with three classes, 292

constraints on edge devices, 321
container orchestration systems, 276
containers

containerizing the codebase, 330
Docker container for TensorFlow Serving,

276
using for training code, 270

context encoder, 426-427
contextual loss, 425
continuous evaluation, 303, 444
continuous integration (CI) triggers,

experiment-launching code invoked in
response to, 337

Conv1D layer, 184
Conv2D layer, 92

reverse of, 388
Conv2DTranspose layer, 170, 387

reverse of, 388
Conv3D layer, 187
ConvNet model, 368
convolutional filters

in AlexNet, 77
filter factorization, 80
in Inception architecture, 88

convolutional networks, 67-79
AlexNet, 75-79
convolutional filters, 67-71

why they work, 68
modular architectures, 87-126
neural architecture search designs, 110-124
pooling layers, 73-75
quest for depth, 80-87
stacking convolutional layers, 72

convolutional neural networks (CNNs), 4
convolutions, 67

with stride of 2 or 3 for downsampling, 74
Coral Edge TPU, 323

using for non-phone devices, 324

Index | 447

cosine distance, 377
counting objects in an image, 363-370

density estimation, 364
extracting patches, 365
prediction, 369
regression, 368
simulating input images, 366

CPUs
decoding operation pipelined on, 201
fetching data to hand off to GPU, 246
tf.data pipeline operations on, 221

create_dataset.sh script, 332
crop_ratio, making a hyperparameter, 274
cross-entropy loss, 23, 51

calculating, 24
cross-validation on the dataset, 199
crowdsourcing, using in labeling, 192
CSV (comma-separated values) files

reading, 15
CutMix, 232
cutouts, 232
CycleGAN, 418-420
c_linear computation written as matrix multi‐

plication, 252

D
data augmentation, 74, 224-235

color distortion, 229-232
dropping information from images, 232-235
for training of object dectection models, 155
in object mesurement training, 359
spatial transformations of images, 225-228

data drift, 329
Data Labeling Service, 193
data parallelism, 261
data quality, enforcing in preprocessing, 208
data scientists, roles interacting with in ML, 327
data visualizations, TensorBoard, 285
datasets

creating by importing files from Cloud Stor‐
age, 351

creating embeddings dataset for image
search, 377

creating for ML pipeline, 331
reading, 14
training and evaluation, creating, 27
training, validation, and test, 328

dead ReLUs, 36
decoders

autoencoder, 386, 387
model with encoder and decoder blocks

chained, 388
caption, 437
variational autoencoder, 397

deconvolution layers, 387
deconvolutions, 162

(see also transposed convolutions)
deep convolutional GAN (DCGAN), 409-411
deep learning, 2

use cases, 5-7
deep neural networks, 43-49

batch normalization, 46
building, 44-45
dropout, 45

deep simulated learning, 366
deepfakes, 431
Dense layer, 19, 20, 20, 51

changing for image regression, 31
in GANS, 401
Keras training model, 28
with ReLU activation function, 36
reverse of, 388

DenseNet, 99-103
density estimation, 364
depth, 5

quest for, 80-87
filter factorization, 80
global average pooling, 85-87
1x1 convolutions, 82
VGG19, 83-85

depth multiplier, 105
depth-separable convolutions, 103-107
depthwise convolutions, 114
detection boxes (YOLO), 136
detection head (RetinaNet), 146
detection loss, computing in RetinaNet, 145
device placement, 285
differential learning rate, 64
Digital Imaging and Communications in Medi‐

cine (DICOM) format, 13
directed acyclic graphs (DAGs), 397
discriminative models, 394
discriminator network (GANs), 402
discriminators, 399

conditional GAN, 414, 418
in DCGAN, 410
SRGAN, 424
training, 402-405

448 | Index

distance functions, 377
distribution changes (in GANs), 407
distribution strategy for model training,

260-266
choosing a strategy, 261
creating MirroredStrategy, 262
creating MultiWorkerMirroredStrategy,

263-265
shuffling data, 263
virtual epochs, 264

creating TPUStrategy, 265
training job submitted to Vertex Training,

271
Docker image, pushing to container registry,

331
Dockerfiles, 331
domain experts in ML, 327
domain-specific language (DSL), 329
dot product (tensor), 67
dropout, 51

E
eager tensors, 255
early stopping, 41, 51, 259
edge filters, 69
edge ML, 321-326

constraints and optimizations, 321
federated learning, 325
processing image buffer, 324
running TensorFlow Lite, 323

edge prediction, 309, 322
(see also edge ML)

EfficientDet, 172
EfficientNet, 119-124
eigenvectors, 361
Einstein summation, 182
elu activation function, 35

advantages and limitations of, 36
embeddings, 56, 383

creating using auxiliary learning task, 385
embedding of images, writing to Tensor‐

Flow Records, 242
in image search, 375

better embeddings, 378-381
search index of embeddings in dataset,

375
pretrained, converting sentences to embed‐

dings, 185
encoders

autoencoder, 386
image, 436

end users of ML, 327
ensembling image classification architectures,

128
entry points in Kubeflow pipelines, 331
epochs, 29

configuring for validation accuracy not to
decrease, 41

defined, 51
virtual, 264, 271

error metrics, 25, 51
ETL (extract, transform, load) pipeline, 204

splitting preproccesing with model code,
241

Euclidean distance, 376
evaluation datasets, 27

creating for Keras model, 27
exact match ratio (EMR), 294
expert systems, 2
explainability of AI models, 327, 337-350

adding explainability, 343-350
deploying the model, 346
explainability signatures, 343-345
explanation metadata, 345
obtaining explanations, 347

techniques, 338-343
IG (Integrated Gradients), 340-341
KernelSHAP, 339
LIME, 338
xRAI, 341

tracing ML training (Tracin), 343
uses of, 337

Explainable AI (XAI) module, creating pertur‐
bed versions of images and getting predic‐
tions for them, 344

Explainable AI SDK, 347
Explainable Representations through AI

(xRAI), 341
exporting a model, 254-258, 305

more usable signature for the model, 256
with multiple signatures, 313
using the new signature, 258

expressivity, trade-off with compression, 386

F
F1 score, 66
FaceNet, 378
facial analysis programs, racial bias in, 302

Index | 449

facial search and verification, 378
fairness, 304

(see also bias)
Aequitas Fairness Tree, 198
monitoring, 302

feature engineering, 51
feature extraction from trained ResNet model,

384
feature maps, 75, 139

combining to surface good spatial and
semantic information, 140

feature pyramid networks (FPNs), 133, 139-142
each spatial location in feature map corre‐

sponding to series of anchors in the
image, 144

feature maps transformed into class predic‐
tions and bounding box deltas, 146

features, 51
federated learning, 325
filter factorization, 80
filters parameter (convolutional layer), 71
fine-tuning, 62-67

differential learning rate, 64
learning rate schedule, 63

fitting the model, 29
5-flowers dataset, 9

working with, 10
Flatten layer, 19

Keras training model, 28
reverse of, 388

flattening, 51
flipping or rotating images, 225-228
focal loss for classification (RetinaNet), 148
FPNs (see feature pyramid networks)
frame by frame image processing (video), 186
Ftrl optimizer, 22
Functional API (Keras), 397
functions

signature of TensorFlow function, 254, 256
using same functions in training and infer‐

ence pipelines, 217

G
GANs (generative adversarial networks), 164,

399-432
anomaly detection, Skip-GANomanly,

430-431
creating the networks, 401
deepfakes, creating, 431

discriminator training, 402-405
distribution changes, 407
generator training, 405-407
image-to-image translation

CycleGAN, 418-420
PatchGAN discriminator, 421

improvements, 409-418
conditional GANs, 411-418
deep convolutional GAN (DCGAN),

409-411
modifying pictures (inpainting), 426-428
SRGAN, 424, 426
training, 400

Gaussian distribution, weights, 283
gcloud command

--config option, 271
--runtime-version and --python-version

options, 269
gcloud ai-platform local, 335
getting explanations, 347
pointing at Google Cloud Storage location

for a model, 310
using to launch a training job, 270

generating images (see image and text genera‐
tion)

generative adversarial networks (see GANs)
generator network (GANs), 401
generators, 399

conditional GAN, 412-414
in DCGAN, 409
SRGAN, 424
training, 405-407

geospatial data, 182-184
raster data, 182
remotely sensed data, 183

geospatial layers in images, 178
GitHub repository for this book, 9, 444
glob function, 14
global average pooling, 86

in SqueezeNet last layer, 90
global explanations, 337
Google BigQuery, 375
Google Cloud

AutoML Vision, 350
deploying SavedModel as web service on,

310
Vertex Pipelines, 329

GPUs, 4, 221, 309

450 | Index

deployed online model making more effec‐
tive use of, 321

distribution strategies and, 261
maximizing utilization of, 246-253

efficient data handling, 246
staying in the TensorFlow graph,

249-253
vectorization of data, 247

monitoring, tools for, 247
running on multiple, training job submitted

to Vertex Training, 271
gradient, 22
gradient descent optimizers, 37
grayscale images, 182
GridMask, 232
ground truth boxes (YOLO), 136
GRU cell, 433, 437

H
Hamming loss, 295
Hamming score, 295
hidden layers, 33
Hough transform, 372
Huber loss (or smooth L1 loss), 150, 157, 161
Huber loss metric, 297
hyperbolic tangent (tanh) activation, 135
hyperparameter tuning, 42, 51

on Vertex AI service, 272-276
continuing tuning, 276
reporting accuracy, 274
results, 275
specifying search space, 273
using parameter values, 273

hyperparameterMetricTag, 274
hyperparameters, optimizing against validation

dataset, 199

I
IG (Integrated Gradients), 340

benefits and limitations of, 349
deploying mode providing IG explanation,

346
image and text generation, 383-441, 444

auxiliary learning tasks, 385
embeddings, 383-385
image captioning, 432-441

batching, 435
captioning model, 436-438
dataset, 433

prediction, 439
tokenizing captions, 434
training loop, 438

image generation, 399-432
anomaly detection, 428-431
deepfakes, 431
generative adversarial networks (GANs),

399-409
image-to-image translation, 418-423
improvements to GANs, 409-418
modifying pictures (inpainting), 426-428
super-resolution, 423-426

image understanding, 383-398
autoencoders, 385-392
variational autoencoders, 392-398

image data
reading, 11
reading dataset file, 14
visualizing, 14

image module (TensorFlow), 212
image regression, 31

(see also regression)
image search, 375-381

distributed search, 375
fast search, 376

image segmentation, 131, 156-172, 443
counting objects in an image, 364
current research directions, 172
in object measurement problem, 360
Mask R-CNN and instance segmentation,

156-166
class and bounding box predictions, 161
instance segmentation, 165
R-CNN, 158
region proposal networks, 157
ROI alignment, 161
transposed convolutions, 162-165

metadata file for image labels, 189
U-Net and semantic segmentation, 166-172

architecture, 169
training, 170

using voting system for labeling, 192
image vision, 55-130

beyond convolution, Transformer architec‐
ture, 124

choosing an image classification architec‐
ture, 126-129
ensemble models, 128
performance comparison, 126

Index | 451

recommended strategy, 129
convolutional networks, 67-79
depth, quest for, 80-87
modular architectures for convolutional

networks, 87-124
neural architecture search designs, 110-124
pretrained embeddings, 56-67

ImageNet (ILSVRC) dataset, 57
imaging systems, images from, 176-178

geospatial layers, 178
polar grids, 176
satellite channels, 177

in-memory models, predictions from, 306-308
Inception architecture, 88
inference

divergence of training and inference pipe‐
lines, 216

saving the model for, 254-258
information dropping, 232-235
ingesting data into training pipeline, 240-253

maximizing GPU utilization, 246-253
methods to make it more efficient, 240
reading data in parallel, 243-246

inpainting, 426-428
input images, forming, 235-237
Input layer, 413
input patches, 365
instance segmentation, 156

(see also image segmentation)
instance-level explanations, 338
interpreters for TensorFlow Lite, 323

Coral Edge TPU interpreter, 324
inverted residual bottlenecks, 115-117
IOUs (intersection over union), 136, 297

pairings between ground truth boxes and
anchor boxes based on, 145

recall-IOU curves, 299
thresholding, 298

iteration
achieving effect of while keeping data in

TensorFlow graph, 257
inability to do in TensorFlow graph, 249

J
JPEGs

base64 encoding, 316
converting to TensorFlow Records, 328
handling bytes in online prediction, 315

JSON

requests for online prediction, 311
returned value of PoseNet pose estimation,

373
Jupyter notebooks

developing ML pipelines in, 330
moving code to Python package, 267
using for labeling, 190

K
Keras

CenterCrop, mixing with TensorFlow's
resize_with_pad, 213

channel order, 181
checkpointing implemented via callbacks,

259
convolutional layers in, 71
data augmentation layers, 226
implementing AlexNet model in, 78
loading pretrained MobileNet as layer, 58
preprocessing in Keras layer or in tf.data

pipeline, 220
preprocessing layers, using, 210
pretrained models in, 59, 79
reverse operations for common layers, 388
separable convolutional layers in, 107
tokenizer, 435

Keras API, 19
Keras Functional API, 221, 397, 413
Keras Sequential API, 397
Keras Tuner, 42
KernelSHAP (Kernel Shapley Additive Explan‐

ations), 339
kernel_size parameter (convolutional layer), 71
Kubeflow Pipelines, 329

caching runs, 336
cluster, 330
connecting components in, 334
deploying a model, 335

Kubernetes, 329
Kullback–Leibler divergence, 397

L
L1 and L2 loss, 150
label patches, 365
labeled training datasets, 3
labeling

automated, 193-195
getting labels from related data, 194
using Noisy Student model, 194

452 | Index

using self-supervised learning, 194
manual, of image data, 187-189
at scale, 189-193

labeling images for multiple tasks, 190
labeling user interface, 190
using labeling services, 193
voting and crowdsourcing, 192

labels, 173
defined, 51
Keras support for two representations, 25
preprocessing in tf.data pipeline, 221
sparse representation for Keras training

model, 28
Lambda layers (Keras), 213
latent vectors, converting images into, 388-392
layers

names of, in pretrained model, 65
per-layer learning rate in pretrained model,

64
in Sequential model, 19

Leaky ReLU, 36, 401
learning rate, 24, 38

defined, 51
differential, 64
schedule, 63
set too high, 63
small value for, 38

LIME (Local Interpretable Model-agnostic
Explanations), 338

linear activation function, 22
Lionbridge labeling service, 193
locations of detected features, 74
logits, 20, 22

defined, 52
loss

binary cross-entropy (BCE), 403
changing to apply penalty on weight values,

39
defined, 52
Huber loss, 157
loss and accuracy curves, 29
on training and validatation datasets train‐

ing neural network, 37
(see also training)

in SRGAN, 425
training loss, 24

loss functions
captioning model, 438
loss landscape of 56-layer ResNet, 98

variational autoencoder, 397
in YOLO architecture, 136-138

lossy compression, 386

M
machine learning, 2
machine learning engineers, 327
machine learning trends, 327-356, 444

explainability, 337-350
adding explainability, 343-350

ML pipelines, 328-337
automating a run, 336
connecting components, 334-336
containerizing the codebase, 330
creating pipeline to run a component,

333
framework to operationalize, 329
Kubeflow Pipelines cluster, 330
need for pipelines, 329
standard set of steps on, 330
writing a component, 331-334

no-code computer vision, 350-355
evaluation, 354
loading data into the system, 351
training, 353
use cases, 350

machine perception, 9-17
map functions, 15

parallelizing operations, 244
Mask R-CNN, 156, 360

(see also image segmentation)
complete architecture, 165

masks of footprint and credit card (example),
361
ratio and measurements, 362
rotation correction, 361

Matplotlib, imshow function, 14
matrix math, 252
max pooling, 73
mean absolute error (MAE), 296, 421
mean average precision (mAP), 300
mean average recall (mAR), 300
mean squared error (MSE), 32, 296
measurement bias, 196
medical diagnosis, computer vision methods

applied to, 6
metadata

documenting for TensorFlow Records, 243
explanation, 345

Index | 453

from machine learning pipeline, 329
image metadata, embedding using TFRe‐

cords, 200
about images' context, 174

metadata table, recording labels in, 188
microcontrollers, running models on, 324
Microsoft Azure

Azure ML, 266
support for SHAP, 343

configuration of containers to monitor
GPU, 247

Custom Vision AI, DataRobot and H2O.ai,
126

mini-batches, 50
MirroredStrategy, 260, 271

creating an instance, 262
mixups, 232
ML Kit framework, 324
MLOps, 337
MNIST dataset, 411

variational autoencoder trained on, 398
MobileNet family of architectures, 114-124

creating embeddings, 376
depthwise convolutions in MobileNetV2,

114
edge-optimized models, 323
EfficientNet, 119-124
embeddings, 378
inverted residual bottlenecks, 115-117
MobileNetV2, 117-119
multiplier parameter, 374

MobileNet model, 57
model architecture, choosing, 126-129
model predictions, 305-326, 444

batch and stream prediction, 317-321
Apache Beam pipeline, 317-319
invoking online prediction, 320
managed service for batch prediction,

319
counting objects in an image, 369
edge ML, 321-326

constraints and optimizations, 321
federated learning, 325
processing the image buffer, 324
running TensorFlow Lite, 323
TensorFlow Lite, 322-323

exporting the model, 305
improving abstraction, 308
improving efficiency of, 309

online prediction, 310-317
handling image bytes, 314-317

using in-memory models, 306-308
model quality, 281-304, 444

metrics for classification, 287-296
binary classification, 287-292
multiclass, multilabel classification,

294-296
multiclass, single-label classification,

292-294
metrics for object detection, 297-300
metrics for regression, 296-297
monitoring, 281-286

data visualization, 285
device placement, 284
training events, 285
using TensorBoard, 281
weight histograms, 283

quality evaluation, 301-303
continuous, 303
fairness monitoring, 302
sliced evaluations, 301

model signature, 312
model training, 239

(see also training pipeline)
model.fit function, 19, 29, 36

adding TensorBoard callback to, 286
passing in EarlyStopping callback, 41

model.predict function, 19
computing predicted value for an image, 19

model.summary function, 29
models

creating and viewing Keras model, 28
creating production computer vision ML

models, 443
improving quality in preprocessing, 209
preprocessing within, 219
pretrained, 57

modular architectures for convolutional neural
networks, 87
DenseNet, 99-103
depth-separable convolutions, 103-107
Inception, 88
ResNet and skip connections, 93-99
SqueezeNet, 89-93
Xception, 107-109

multiclass, multilabel classification, 294-296
multiclass, single-label classification, 292-294
MultiWorkerMirroredStrategy, 261, 271

454 | Index

creating, 263-265
shuffling data, 263
virtual epochs, 264

N
NASNet, 110-113
natural language processing, using computer

vision techniques, 185
neural architecture search designs, 110-124

MobileNet family of architectures, 114-124
NASNet, 110-113

neural networks, 4
creating using Keras, 32-49

early stopping, 41
hidden layers, 33
hyperparameter tuning, 42
learning rate, 37
regularization, 39
training the neural network, 36

depth of, 5
generator and discriminator in GANs, 399

neurons, 52
NMS (non-maximum suppression), 152-154
no-code computer vision, 350-355

evaluation results, 354
loading data, 351
training the model, 353
uses of, 350

noise, 29
Noisy Student model, 194
nonlinearity, adding to upsampling steps, 170
Notebooks service on Vertex AI, 330
numpy, 13

converting image from tensor to array, 14
.numpy function, 250, 307

O
object absence loss, 137
object classification loss, 137
object detection, 131-156, 443

current research directions, 172
metadata file for image labels, 189
metrics for, 297-300
models, 371
RetinaNet, 139-156
using crowdsourcing for labeling, 192
YOLO architecture, 133-138

object measurement, 357-363
ratio and measurements, 362

reference object, 358-360
rotation correction, 361

odds, 20
104 flowers dataset, 65
one-hot encoding

defined, 52
labels, 24, 25

1x1 convolutions, 82
OneDeviceStrategy, 263, 270
online prediction, 309, 310-317

handling image bytes, 314-317
adding prediction signature, 315
exporting signatures, 316
loading the model, 315
using base64 encoding, 316

invoking for batch and stream prediction,
320

modifying the serving function, 312-314
changing default signature, 313
using multiple signatures, 313

TensorFlow Serving, 310-312
deploying the model, 310
making predictions, 311-312

Open Neural Network Exchange (ONNX), 254
opponents and proponents, 343
optical character recognition (OCR), 5
optimizers, 22

AdamW, 65
Keras Tuner optimizataion algorithms, 42

overfitting, 29, 39
Oxford Pets dataset, 170

P
padding parameter (convolutional layer), 71
padding, use in image resizing, 213
panoptic segmentation, 172
parallelizing data reads, 244
parse_csvline function, 15
partial derivative of cross-entropy, 23
pass-through parameters, 312
patches, extracting, 366
PatchGAN discriminator, 420
performance

comparison for image classification archi‐
tectures, 126

gains from using Apache Beam batch pre‐
diction pipeline with online prediction,
320

Index | 455

measuring for parallelized data reads,
244-246

problems in model predictions, 309
PersonLab, 371
photographs, collecting for image data, 174-176

camera, recommendations for, 175
compressed or uncommpressed image for‐

mats, 175
drawbacks of high image resolutions, 174

Pix2Pix, 420-423
pooling layers, 73-75

in DenseNet, 99
pose detection (see pose estimation)
pose estimation, 370-375

identifying multiple poses, 374
PersonLab, 371

PoseNet, 371
accuracy determined by underlying classifi‐

cation model, 374
model, 372

precision, 26
classification, 289
defined, 52
for imbalanced dataset, 66

precision-recall curve, 26, 290
interpolated, 300

prediction functions
adding signature, 315
examining signature, 305

prediction precision, 289
prediction recall, 289
predictions, 305

(see also model predictions)
image captioning model, 439
plotting for Keras model, 30
using model.predict function, 19

preprocessed data, storing, 241
preprocessing, 207-238, 444

carrying out in tf.data pipeline or as Keras
layer in the model, 220

data augmentation, 224-235
color distortion, 229-232
information dropping, 232-235

forming input images, 235-237
function for image bytes, accessing for

online prediction, 315
reasons for, 208-210

data quality transformation, 208
improving model quality, 209

shape transformation, 208
size and resolution of images, 210-216

mixing Keras and TensorFlow, 213
model training, 214-216
using Keras peprocessing layers, 210
using TensorFlow image module, 212

splitting between ETL pipeline and model
code, 241

training-serving skew, 216-224
avoiding by preprocessing within the

model, 219
avoiding by using tf.transform, 221-224
preventing by reusing functions, 217

writing code that follows batch operation in
Keras layer, 248

pretrained embeddings, 56-67, 185
fine-tuning, 62-67
pretrained model, 57
transfer learning, 58-62

principal component analysis (PCA), 361
probability

converting logits to, 20
output of classification model, 20

programming languages, TensorFlow APIs call‐
able from, 308

projections (geographic), 183
proof of concept for image data, 179
proponents and opponents, 343
Python

apache-beam[gcp] and cloudml-hypertune
packages, installing, 331

API to submit runs, incorporating into
Cloud Function or Cloud Run container,
336

calling pure Python code from TensorFlow,
250

client program loading and invoking in-
memory model, 306

container or Python package for training
code, 270

creating a package, 266-268
installing dependencies, 268
invoking Python modules, 267
reusable modules, 267

functions written to be polymorphic, 254
inspecting function signature using reflec‐

tion, 255
making sure Vertex Training is using same

version of, 269

456 | Index

numpy array math library, 13
organizing production ML code into pack‐

ages, 266
wrapping in bash script to forward to ML

pipeline component, 332

Q
quality evaluation for models, 301-303

fairness monitoring, 302
sliced evaluations, 301

R
R-CNN, 158
radar, 176
ragged batches, 211
ragged tensors, 220
RandomCrop layer, 227
RandomFlip layer, 226
rank (tensors), 13
raster data, 182
raters, 187
reading data in parallel, 243-246

parallelizing, 243
recall, 26

defined, 52
for imbalanced dataset, 66

receiver operating characteristic (ROC) curve,
27, 290

rectified linear unit (ReLU), 4, 35, 52
recurrent neural networks (RNNs), 187
region proposal networks (RPNs), 156, 157
regions of interest (see ROIs)
regression, 31

counting objects in an image, 364
losses in, 150
metrics for, 296-297
training regression model on patches to pre‐

dict density, 368
regression loss functions, 32
regularization, 5, 39

defined, 52
dropout in deep neural networks, 45

reinforcement learning, 110
ReLU activation function, 4, 35

advantages and limitations of, 36
remote sensing, 183
Reshape layer, 388, 415
reshaping img tensor, 19
residual blocks, 94

Resizing layer, 211
interpolation options for squashing and

stretching images, 212
ResNet, 93-99

quantBytes parameter, 374
residual blocks, 94
ResNet50 architecture, 96
skip connections, 94
summary of, 98

ResNet50 model
pretrained, instantiating, 79
trained on ImageNet dataset to classify

images, 384
Responsible AI, 327

(see also bias; explainability of AI models)
REST APIs

combining with Beam batch prediction
pipeline, 320

online model predictions served via, 310
RetinaNet, 139-156

anchor boxes, 142-145
architecture, 146-148
feature pyramid networks, 139-142
focal loss (for classification), 148
Mask R-CNN and, 166
non-maximum suppression (NMS),

152-154
other considerations, 154
smooth L1 loss (for box regression), 150

ROIs (regions of interest), 157
assignment to most relevant FPN level, 160
resampling and alignment of the feature

maps to, 166
ROI alignment, 161

root mean squared error (RMSE), 296
rotation correction, masks in object measure‐

ment, 361

S
satellite images, 177
SavedModel, 254

default signature for serving predictions,
305

deploying as web service on Google Cloud,
310

invoking, 254
saved_model_cli (TensorFlow), 254, 305
saving model state, 253-260

checkpointing, 258-260

Index | 457

exporting the model, 254-258
reasons for, 253

Scalable Nearest Neighbors (ScaNN), 376
initializing ScaNN searcher, 377

scaling images, 180
scipy package, 185
search designs, neural architecture (see neural

architecture search designs)
segmentation (see image segmentation)
selection bias, 195
self-supervised learning, 173

using for labeling, 194
semantic segmentation, 156

(see also image segmentation)
separable convolutions, 104

(see also depth-separable convolutions)
Sequential models, 19
serverless ML, 266-278

creating Python package for production
code, 266-268

deploying the model, 276-278
hyperparameter tuning, 272-276
submitting a training job to Vertex Training,

269-272
distribution to multiple GPUs, 271
distribution to TPU, 271
making sure Vertes using same version

of Python and TensorFlow, 269
running on multiple GPUs, 271

serving, 216
(see also training-serving skew)
transformation of images during, 223

serving function
changing signature to process image buffer,

324
modifying, 312-314

changing default signature, 313
using multiple signatures, 313

serving_default, specifying model signature for,
258

shape property (tensors), 13
shape transformation (input images), 208
shuffling data, 263
sigmoid, 20

defined, 52
sigmoid activation function, 22, 35

drawbacks, 36
in YOLO architecture, 135

signature of TensorFlow function, 254-256

signatures for explainability, 343
simulating images, 179, 366
single-shot detectors, 138, 140

(see also YOLO)
size and resolution of images, preprocessing,

210-216
skip connections, 94
sliced evaluations, 198, 301
slicing functionality (TensorFlow), 251

difference between tf.gather and, 257
smooth L1 loss for box regression (RetinaNet),

150
smoothing filters, 68
Soft-NMS, 153
softmax, 20, 21

defined, 52
softmax activation function, 22
sparse representation of labels, 25
sparse tensors, 206
spatial dimensions (feature maps), 146
spectrograms, 184
SQL query, searching for similar embeddings,

376
squared loss, 150
SqueezeNet, 89-93

summary of, 93
SRGAN, 424-426
SRResNet, 424
stacking convolutional layers, 72
staleness criteria for Kubeflow cache, 336
Standard-NMS, 154
stochastic gradient descent (SGD), 22, 24
storing data efficiently, 240-243

preprocessed data, 241
storing images as TensorFlow Records, 240

strategy.distribute_dataset function, 266
stream prediction, 309, 317-321

Apache Beam pipeline for, 317-319
invoking online prediction, 320

strides parameter (convolutional layer), 71
subset accuracy, 294
super-resolution, 423-426

T
tanh activation function, 35, 135
tensor processing units (TPUs), 24
TensorBoard, 282

data visualization, 285
histograms for monitoring, 283

458 | Index

TensorFlow model graph output to, 284
training events, monitoring, 285

TensorFlow
for Android, PoseNet implementations in,

372
channels-last ordering, 181
container creation, base container image

for, 270
dataset, 5-flowers dataset, 10
glob function, 14
invoking pure Python functionality from,

250
Keras model, 19
Kubeflow Pipelines running on, 329
making sure Vertex Training is using same

version of, 269
mixing resize_with_pad and Keras's Center‐

Crop, 213
non-maximum suppression, 154
parallelizing reads of data, 244
preprocessing as part of tf.data pipeline or

in Keras layer in the model, 220
SavedModel format, 254
tensors, 13
using image module in preprocessing, 212

TensorFlow Extended (TFX)
creating CSV reader, 222
Python APIs on, 330

TensorFlow Hub
image format used in, 60
models returning 1D feature vector, 60
pretrained MobileNet, 58
pretrained models in, 79

TensorFlow JS PoseNet model, 372
TensorFlow Lite, 322-323

running, 323
TensorFlow Records (TFRecords), 200-204

converting JPEG image files to, using
Apache Beam, 200

creating using TFRecorder Python package,
204

reading, 204-206
storing images as, 240

TensorFlow Serving, 276
managed versions on major cloud provid‐

ers, 277
using in online prediction, 310-312

deploying the model, 310
tensors

1D, 16
4D, as input/outputs of convolutional layers,

71
defined, 13, 53
dot product, 67
pred tensor from model.predict, 20
sparse, 206

test datasets, 199
text classification, creating text embeddings,

385
TextLineDataset, 15
tf.cond function, 251
tf.data API, 15
tf.einsum function, 181
tf.expand_dims function, 365
tf.gather function, 257
tf.image module, 212

adjusting contrast and brightness of images,
229

tf.image.extract_patches function, 365
tf.map_fn function, 257
tf.pow function, 251
tf.py_function, using to call pure Python code,

250
tf.reduce_mean function, 16
tf.reshape function, 19
tf.transform function, 221-224
tf.where function, 251
TF_CONFIG variable, 261

verifying setup for, 263
threshold (classification metrics), 287, 289
tiles, processing images to form, 236-237
TinyML, 324
tokenizing captions, 434
TPUs, 261, 309

distribution to, training job submitted to
Vertex Training, 271

edge, 323
sources for, 262

TPUStrategy, 261, 272
creating, 265

tracing ML training (Tracin), 343
training datasets, 199

creating for Keras model, 27
training events, monitoring, 285
training loss, 24
training models, 27-32, 328

autoencoder model, 388
image preprocessing and, 214-216

Index | 459

in machine learning pipeline, 334
in no-code computer vision system, 353
object measurement model, 358

training neural networks, 23, 36
training pipeline, 239-279, 444

distribution strategy, 260-266
choosing a strategy, 261
creating the strategy, 262-266

efficient ingestion of data, 240-253
reading data in parallel, 243-246
storing data efficiently, 240-243

saving model state, 253-260
checkpointing, 258
exporting the model, 254-258

training, defined, 53
training-serving skew, 216-224

avoiding by preprocessing within the model,
219

avoiding using tr.transform function,
221-224

defined, 216
preventing by reusing functions, 217

transfer learning, 58-62
extracting embeddings from model trained

on larger dataset, 383
transformations

spatial transformations of images, 225-228
using tf.transform, 221-224

Transformer architecture, 124-126
transposed convolutions, 162-165

versus up-convolutions in GANs, 164
trends in machine learning (see machine learn‐

ing trends)
triplet loss function, 378
2x2 max pooling, 73
type hints, providing in Python3, 255

U
U-Net, 420
U-Net and semantic segmentation, 166-171

architecture, 169
training, 170

ultrasound, 176
Universal Sentence Encoder (USE), 185
up-convolution, 164
upsampling, 388

in Keras, 170
Upsampling2D layer, 388

V
VAEs (see variational autoencoders)
validation datasets, 199
variational autoencoders, 392-398

architecture, 396-397
loss, 397-398

vectorization, 247
vectorizing code, 13

color distortion operation, 248
efficiency gains at prediction, 257

Vertex AI, 266
deploying SavedModel into, 277
managed service for batch prediction, 319
model management and versioning capabil‐

ities, 277
Notebooks service, container images for

Notebook instances, 330
submitting training job to Vertex Training,

269-272
Vertex Notebooks, 269

container image corresponding to each
Notebook instance, 270

Vertex Pipelines, 329
Vertex Prediction, 329
Vertex Training, 329
VGG loss, 425
VGG19, 83-85
virtual CPUs (vCPUs), 244
virtual epochs, 264, 271
vision datasets, creating, 173-206, 443

automated labeling, 193
bias, 195-198
collecting images, 173-179

from imaging systems, 176-178
photographs, 174-176
proof of concept, 179

creating the dataset, 199-206
reading TensorFlow Records into a data‐

set, 204-206
splitting data into training, validation,

and testing sets, 199-200
TensorFlow Records, 200

data types, 180-187
audio and video, 184-187
channels, 180-182
geospatial data, 182-184

labeling at scale, 189-193
manual labeling of image data, 187-189

vision problems, advanced, 357-381, 444

460 | Index

counting objects in an image, 363-370
density estimation, 364
extracting patches, 365
prediction, 369
regression, 368
simulating input images, 366

image search, 375-381
better embeddings, 378-381
distributed search, 375
fast search, 376

object measurement, 357-363
ratio and measurements, 362
reference object, 358-360
rotation correction, 361

pose estimation, 370-375
identifying multiple poses, 374
PersonLab, 371
PoseNet model, 372

Vision Transformer (ViT) model, 124
voting system, implementing for labeling, 192

W
weights

adjusting in regularization, 39
convolutional network filters and, 69
distributions of, 283
learnable weights in AlexNet layers, 77
quantizing model weights in edge ML, 323

TensorBoard histogram for, 283
weights matrix of 1x1 convolutional layer,

82
weights matrix of convolutional layer, 71

wildcard matching with glob function, 14
word embeddings, 385

X
X-rays, 176
Xception architecture, 107-124
Xception model, 66
xRAI (Explainable Representations through

AI), 341
benefits and limitations of, 349
deploying module to get xRAI explanations,

346
getting xRAI explanations, 348

Y
YOLO (object detection architecture), 133-138

grid, 134
limitations of, 138
loss function, 136-138
object detection head, 135

You Only Look Once object detection architec‐
ture (see YOLO)

Index | 461

About the Authors
Valliappa (Lak) Lakshmanan is the director of analytics and AI solutions at Google
Cloud, where he leads a team building cross-industry solutions to business problems.
His mission is to democratize machine learning so that it can be done by anyone
anywhere.

Martin Görner is a product manager for Keras/TensorFlow focused on improving
the developer experience when using state-of-the-art models. He’s passionate about
science, technology, coding, algorithms, and everything in between.

Ryan Gillard is an AI engineer in Google Cloud’s Professional Services organization,
where he builds ML models for a wide variety of industries. He started his career as a
research scientist in the hospital and healthcare industry. With degrees in neuro‐
science and physics, he loves working at the intersection of those disciplines explor‐
ing intelligence through mathematics.

Colophon
The bird on the cover of Practical Machine Learning for Computer Vision is an emer‐
ald toucanet (Aulacorhynchus prasinus), the smallest species of toucan. Central and
South America have large populations from the cloud forests of Costa Rica to
Venezuela.

Vibrant green feathers camouflage emerald toucanets in the tropics. Adults typically
measure 12–13 inches long, weigh just over 5 ounces, and live 10–11 years in the
wild. Their beaks are colorful: yellow on top, a white outline, and red or black on the
bottom. They eat fruit and insects, as well as small lizards and the eggs and young of
other birds. Groups of about eight will hunt and forage together. Emerald toucanets
build their nests by enlarging the nests of smaller birds. The male and female trade
off shifts in the nest, incubating, feeding, and cleaning their chicks.

Deforestation has driven emerald toucanets into shade coffee farms. Overall, their
population is decreasing. Many of the animals on O’Reilly’s covers are endangered; all
of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Shaw’s Zoology. The cover fonts are Gilroy Semibold and Guardian Sans. The
text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Copyright
	Table of Contents
	Preface
	Who Is This Book For?
	How to Use This Book
	Organization of the Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Machine Learning for Computer Vision
	Machine Learning
	Deep Learning Use Cases
	Summary

	Chapter 2. ML Models for Vision
	A Dataset for Machine Perception
	5-Flowers Dataset
	Reading Image Data
	Visualizing Image Data
	Reading the Dataset File

	A Linear Model Using Keras
	Keras Model
	Training the Model

	A Neural Network Using Keras
	Neural Networks
	Deep Neural Networks

	Summary
	Glossary

	Chapter 3. Image Vision
	Pretrained Embeddings
	Pretrained Model
	Transfer Learning
	Fine-Tuning

	Convolutional Networks
	Convolutional Filters
	Stacking Convolutional Layers
	Pooling Layers
	AlexNet

	The Quest for Depth
	Filter Factorization
	1x1 Convolutions
	VGG19
	Global Average Pooling

	Modular Architectures
	Inception
	SqueezeNet
	ResNet and Skip Connections
	DenseNet
	Depth-Separable Convolutions
	Xception

	Neural Architecture Search Designs
	NASNet
	The MobileNet Family

	Beyond Convolution: The Transformer Architecture
	Choosing a Model
	Performance Comparison
	Ensembling
	Recommended Strategy

	Summary

	Chapter 4. Object Detection and Image Segmentation
	Object Detection
	YOLO
	RetinaNet

	Segmentation
	Mask R-CNN and Instance Segmentation
	U-Net and Semantic Segmentation

	Summary

	Chapter 5. Creating Vision Datasets
	Collecting Images
	Photographs
	Imaging
	Proof of Concept

	Data Types
	Channels
	Geospatial Data
	Audio and Video

	Manual Labeling
	Multilabel
	Object Detection

	Labeling at Scale
	Labeling User Interface
	Multiple Tasks
	Voting and Crowdsourcing
	Labeling Services

	Automated Labeling
	Labels from Related Data
	Noisy Student
	Self-Supervised Learning

	Bias
	Sources of Bias
	Selection Bias
	Measurement Bias
	Confirmation Bias
	Detecting Bias

	Creating a Dataset
	Splitting Data
	TensorFlow Records
	Reading TensorFlow Records

	Summary

	Chapter 6. Preprocessing
	Reasons for Preprocessing
	Shape Transformation
	Data Quality Transformation
	Improving Model Quality

	Size and Resolution
	Using Keras Preprocessing Layers
	Using the TensorFlow Image Module
	Mixing Keras and TensorFlow
	Model Training

	Training-Serving Skew
	Reusing Functions
	Preprocessing Within the Model
	Using tf.transform

	Data Augmentation
	Spatial Transformations
	Color Distortion
	Information Dropping

	Forming Input Images
	Summary

	Chapter 7. Training Pipeline
	Efficient Ingestion
	Storing Data Efficiently
	Reading Data in Parallel
	Maximizing GPU Utilization

	Saving Model State
	Exporting the Model
	Checkpointing

	Distribution Strategy
	Choosing a Strategy
	Creating the Strategy

	Serverless ML
	Creating a Python Package
	Submitting a Training Job
	Hyperparameter Tuning
	Deploying the Model

	Summary

	Chapter 8. Model Quality and Continuous Evaluation
	Monitoring
	TensorBoard
	Weight Histograms
	Device Placement
	Data Visualization
	Training Events

	Model Quality Metrics
	Metrics for Classification
	Metrics for Regression
	Metrics for Object Detection

	Quality Evaluation
	Sliced Evaluations
	Fairness Monitoring
	Continuous Evaluation

	Summary

	Chapter 9. Model Predictions
	Making Predictions
	Exporting the Model
	Using In-Memory Models
	Improving Abstraction
	Improving Efficiency

	Online Prediction
	TensorFlow Serving
	Modifying the Serving Function
	Handling Image Bytes

	Batch and Stream Prediction
	The Apache Beam Pipeline
	Managed Service for Batch Prediction
	Invoking Online Prediction

	Edge ML
	Constraints and Optimizations
	TensorFlow Lite
	Running TensorFlow Lite
	Processing the Image Buffer
	Federated Learning

	Summary

	Chapter 10. Trends in Production ML
	Machine Learning Pipelines
	The Need for Pipelines
	Kubeflow Pipelines Cluster
	Containerizing the Codebase
	Writing a Component
	Connecting Components
	Automating a Run

	Explainability
	Techniques
	Adding Explainability

	No-Code Computer Vision
	Why Use No-Code?
	Loading Data
	Training
	Evaluation

	Summary

	Chapter 11. Advanced Vision Problems
	Object Measurement
	Reference Object
	Segmentation
	Rotation Correction
	Ratio and Measurements

	Counting
	Density Estimation
	Extracting Patches
	Simulating Input Images
	Regression
	Prediction

	Pose Estimation
	PersonLab
	The PoseNet Model
	Identifying Multiple Poses

	Image Search
	Distributed Search
	Fast Search
	Better Embeddings

	Summary

	Chapter 12. Image and Text Generation
	Image Understanding
	Embeddings
	Auxiliary Learning Tasks
	Autoencoders
	Variational Autoencoders

	Image Generation
	Generative Adversarial Networks
	GAN Improvements
	Image-to-Image Translation
	Super-Resolution
	Modifying Pictures (Inpainting)
	Anomaly Detection
	Deepfakes

	Image Captioning
	Dataset
	Tokenizing the Captions
	Batching
	Captioning Model
	Training Loop
	Prediction

	Summary

	Afterword
	Index
	About the Authors
	Colophon

